
Robust Mobile Manipulation for Robotic Pushing and Nonprehensile Object
Transportation

by

Adam William Heins

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Institute for Aerospace Studies
University of Toronto

© Copyright 2026 by Adam William Heins

Robust Mobile Manipulation for Robotic Pushing and Nonprehensile Object Transportation

Adam William Heins
Doctor of Philosophy

Institute for Aerospace Studies
University of Toronto

2026

Abstract

Mobile manipulation is a necessary skill for many tasks ranging from industrial to domestic settings.

Humans handle such tasks easily, either using our prehensile hands to grasp and carry objects, or

using a variety of nonprehensile behaviours like pushing, rolling, throwing, and catching. Our goal is

to provide robots with similar capabilities, in order to automate the tasks that humans are unwilling

or unable to perform. In this thesis, we develop new methods for two nonprehensile manipulation

tasks: planar pushing and nonprehensile object transportation. In particular, we develop control and

planning algorithms that are robust to uncertain object parameters, including friction, geometry,

and mass distribution. We first propose a reactive controller for planar pushing using only force

feedback to sense the pushed object, which makes no assumptions about friction, mass distribution,

or geometry, except that the object is convex. Next, we develop a model predictive controller for

nonprehensile object transportation that is robust to frictional uncertainty and fast enough to avoid

moving obstacles, including a thrown ball. Finally, we extend this approach by developing an offline

planner that also accounts for inertial parameter uncertainty in the transported objects. All of these

approaches are validated through extensive experiments on a real mobile manipulator robot.

ii

Acknowledgements

I would like to thank my supervisor for opportunity and guidance, my thesis committee for patience
and feedback, my family for love and support, my friends for humour and diversion, my labmates
for camaraderie and curiosity, and my wife for all of the above and more.

iii

Not all those who wander are lost.

J. R. R. Tolkien, The Fellowship of the Ring

Engineers like to solve problems. If there
are no problems handily available, they
will create their own problems.

Scott Adams, The Dilbert Principle

Study hard what interests you the most in
the most undisciplined, irreverent and
original manner possible.

Richard Feynmann

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Outline . 3
1.3 Novel Contributions . 3
1.4 Publications . 4

2 Background 6
2.1 Rigid Bodies . 6

2.1.1 Geometry and Kinematics . 6
2.1.2 The Newton-Euler Equations . 7
2.1.3 Inertial Parameters . 7
2.1.4 Zero-Moment Point . 9

2.2 Robotic Manipulation . 10
2.2.1 Geometry and Kinematics . 10
2.2.2 Friction and the Contact Wrench Cone . 11
2.2.3 Prehensile and Nonprehensile Manipulation 13

2.3 Optimization . 15
2.3.1 Quadratic Programming . 15
2.3.2 Optimal Control . 16
2.3.3 Semidefinite Programming . 18

2.4 Experimental Platform . 18

3 Robotic Pushing With Force Feedback 20
3.1 Introduction . 20
3.2 Related Work . 22
3.3 Problem Statement . 23
3.4 Task-Space Pushing Controller . 24

3.4.1 Stable Pushing and Path-Tracking . 25
3.4.2 Contact Recovery . 26
3.4.3 Obstacle Avoidance and Admittance Control 27
3.4.4 Force Filtering . 27

v

3.5 Inverse Kinematics Controller . 28
3.6 Simulation Experiments . 28
3.7 Hardware Experiments . 34
3.8 Conclusion . 38

4 Model Predictive Control for Nonprehensile Object Transportation 40
4.1 Introduction . 40
4.2 Related Work . 42
4.3 System Model . 43

4.3.1 Robot Model . 43
4.3.2 Object Model . 44

4.4 Sticking Constraints . 44
4.5 Robust Sticking Constraints . 45
4.6 Constrained Model Predictive Controller . 48

4.6.1 Soft Constraints . 49
4.6.2 Low-level Joint Controller . 49
4.6.3 State Estimation . 50

4.7 Simulation Experiments . 51
4.7.1 Sticking Constraint Comparison . 51
4.7.2 Non-Parallel Support Planes . 53

4.8 Hardware Experiments . 54
4.8.1 Static Environments . 54
4.8.2 Dynamic Environments . 56
4.8.3 Comparison with Aligned Approach . 59

4.9 Conclusion . 61

5 Nonprehensile Object Transportation with Uncertain Inertial Parameters 62
5.1 Introduction . 62
5.2 Related Work . 64
5.3 Background . 65

5.3.1 Polyhedron Double Description . 65
5.3.2 Moment Relaxations . 65

5.4 Modelling . 68
5.4.1 Robot Model . 68
5.4.2 Object Model . 68

5.5 Sticking Constraints with Uncertain Inertial Parameters 69
5.5.1 Contact Force Constraints . 69
5.5.2 Robustness to Inertial Parameter Uncertainty 69

5.6 Robust Planning . 71
5.7 Verifying Sticking Constraint Satisfaction . 72

vi

5.7.1 Double Description of the Contact Wrench Cone 72
5.7.2 Physically Realizable Inertial Parameters 72
5.7.3 Worst-Case Sticking Constraints . 73

5.8 Simulation Experiments . 74
5.9 Hardware Experiments . 77
5.10 Conclusion . 80

6 Conclusion 81
6.1 Summary . 81
6.2 Future Work . 82

6.2.1 Planar Pushing With Force Feedback . 82
6.2.2 Nonprehensile Object Transportation . 83

6.3 Closing Remarks . 84

A Additional Results on Physically Realizable Inertial Parameters 85
A.1 Existing Ellipsoid Condition . 85
A.2 Novel Box Conditions . 85
A.3 Faster Sticking Constraint Verification . 87

Bibliography 90

vii

List of Figures

1.1 Examples of nonprehensile manipulation. 2

2.1 Example of two point masses. 8
2.2 The Coulomb friction cone. 11
2.3 A three-dimensional object under frictional contact. 12
2.4 Planar examples of frictional contact. 13
2.5 Hybrid dynamics of a contact point. 14
2.6 Our mobile manipulator. 18

3.1 Our robot pushing a box with single-point contact. 21
3.2 Example of our pushing controller with a square slider. 24
3.3 Block diagram of the pushing control system. 26
3.4 Basic obstacle avoidance of the pusher. 27
3.5 Example of two sliders. 29
3.6 Simulated trajectories for the Box and Cylinder sliders along a straight path. . . . 31
3.7 Simulated trajectories for the Box and Cylinder sliders along a curved path. . . . 31
3.8 Simulated trajectories with high and low contact friction. 32
3.9 A simulated trajectory where the contact point switches faces on the slider. 33
3.10 The “Box” and “Barrel” sliders used for real-world experiments. 34
3.11 Position trajectories for real sliders pushed along a straight path. 35
3.12 Position trajectories for real sliders pushed along a curved path. 36
3.13 Metrics for our proposed approach and the vision-based baseline 37
3.14 Slider velocity and force magnitude with and without a wall obstacle. 38

4.1 Our mobile manipulator balancing a pink bottle while avoiding a thrown volleyball. 41
4.2 A bottle and globe balanced on a tray. 46
4.3 Planar view of two arrangements of objects. 46
4.4 An arrangement consisting of a box and a fixture. 51
4.5 Force and zero-moment point over time. 52
4.6 Distance of EE to goal location and tilt angle of the tray. 53
4.7 Initial and final positions of non-parallel support plane example. 54
4.8 Setup for real-world object transportation experiments. 55

viii

4.9 Object error and policy compute time in freespace. 56
4.10 Object error and policy compute time with static obstacles. 57
4.11 Sample trajectories for the Bottle and Cups arrangements. 58
4.12 Base and end effector trajectories with a sudden obstacle. 59
4.13 Example of the robot dodging the volleyball while balancing the bottle. 60
4.14 Projectile avoidance experiment results. 60
4.16 Comparison between aligned and proposed robust constraints. 61
4.15 Arrangement consisting of a bottle stacked on a box. 61

5.1 Our robot transporting an object with uncertain inertial parameters. 63
5.2 An object with uncertain inertial parameters. 69
5.3 Different sticking constraint approaches. 75
5.4 Success rate of different sticking constraints. 76
5.5 The box used for real-world experiments. 78
5.6 Maximum object displacement during real-world experiments. 79
5.7 Distance between end effector and goal position over time. 80

ix

List of Tables

1.1 Assumptions and trade-offs for the different components of the thesis. 3

3.1 Controller parameters for simulation and hardware experiments. 29
3.2 Pushing simulation initial states and parameters 30

4.1 Approximate parameters for transported objects shown in Figure 4.8. 54

5.1 Maximum possible constraint violation for different object heights and sticking
constraint methods. 77

5.2 Maximum planned EE velocity, acceleration, and RMSE tracking error in hardware
experiments. 79

A.1 Comparison of physical realizability conditions for verifying trajectories from
Section 5.8. 88

x

Acronyms

CoM center of mass
CW contact wrench
CWC contact wrench cone
DOF degree of freedom
EE end effector
FK forward kinematics
FT force-torque
GIW gravito-inertial wrench
GN Gauss-Newton
GP Gaussian process
IK inverse kinematics
IL imitation learning
IP interior point
KKT Karush-Kuhn-Tucker
LSTM long short-term memory
MPC model predictive control, model predictive controller
NLP nonlinear program
OCP optimal control problem
QP quadratic program, quadratic programming
PCC polyhedral convex cone
RL reinforcement learning
ROS robot operating system
RTI real-time iteration
SA support area
SDP semidefinite program, semidefinite programming
SQP sequential quadratic programming
TMS truncated moment sequence
TKMP truncated K-moment problem
ZMP zero-moment point

xi

Notation

R The set of real numbers.
R+ The set of non-negative real numbers.
Rn The set of n-dimensional real vectors.
Rn
+ The set of n-dimensional real vectors with non-negative entries.

N The set of non-negative integers.
Sn The set of n× n symmetric matrices.
Sn+ The set of n× n symmetric positive semidefinite matrices.
Sn++ The set of n× n symmetric positive definite matrices.
SO(n) The special orthogonal group.
SE(n) The special Euclidean group.
x Lower-case symbols in plain font are real scalars.
x Lower-case symbols in bold font are real vectors.
X Upper-case symbols in bold font are real matrices.
1n The n× n identity matrix.
≤ Elementwise inequality: a ≤ b means b− a ∈ Rn

+.
< Strict elementwise inequality.
≼ Matrix inequality: A ≼ B means B −A ∈ Sn+.
≺ Strict matrix inequality.
˙(·) Time derivative.

xii

Chapter 1

Introduction

1.1 Motivation

This thesis is fundamentally concerned with the manipulation of objects by a robot; that is, we
seek to endow robots with the capability to move objects around in a useful way, like humans
do. It is particularly appealing to use robots to automate tasks that are undesirable for humans
because they are dangerous, difficult, or dull.1 Examples include moving heavy objects and servicing
infrastructure in space, underwater, or in radioactive environments (dangerous, difficult) as well as
repetitive tasks like packing containers, stocking shelves, assembling parts, and domestic cleaning
(dull). All of these tasks require object manipulation; automating them has the potential to improve
overall human quality of life while also reducing labour costs.

Robotic manipulation can be divided into two general categories: prehensile and nonprehensile.
Prehensile means “capable of grasping or holding” [7]; for example, humans and other primates
have prehensile hands, while other animals possess prehensile tails [8], tongues [9], and trunks [10].
Prehensile manipulation thus refers to the case when the manipulated object is securely grasped and
has no independent degrees of freedom (DOFs). In contrast, this thesis is focused on nonprehensile

manipulation [11] (also known as graspless manipulation, as the manipulated object is not fully
or securely grasped), in which the manipulated objects retain some independent DOFs that must
be taken into account. The simplest example of nonprehensile manipulation is the act of pushing,
where the contact between the manipulator and object allows the object to be pushed in one
direction but not pulled in the opposite direction. Other examples of nonprehensile manipulation
include throwing, catching, rolling, and batting [12]. Nonprehensile manipulation is useful for
handling objects that are too heavy, cumbersome, or delicate to easily grasp, or for transporting
multiple objects at once by balancing them on a tray (like a restaurant waiter) or stacking them
atop one another (see Figure 1.1). However, compared to a prehensile approach, nonprehensile
manipulation is challenging due to increased modelling complexity and the hybrid nature of contact
mechanics [12].

1This is one common variation of the so-called “3Ds” [6].

1

CHAPTER 1. INTRODUCTION 2

CAUTION
HEAVY

Figure 1.1: Examples of nonprehensile manipulation. Left: Waiters use a tray to carry multiple
drinks and dishes at once, which is both practical and visually appealing. Right: Humans resort to
pushing objects that are too large or heavy to pick up.

Research into robotic nonprehensile manipulation began with Mason [13] investigating the
mechanics of planar pushing and then continued with Lynch [11], who developed control and
planning algorithms for planar pushing as well dynamic manipulation tasks like rolling, throwing,
and catching. A rich literature encompassing a variety on nonprehensile manipulation tasks has
since developed [12]. Early work on nonprehensile manipulation tended to be restricted to planar

(i.e., two-dimensional) environments, while more recent work also includes spatial (i.e., three-
dimensional) environments. In addition, some methods are limited to quasistatic motion, in which
acceleration and inertial forces are negligible, in contrast to full dynamic motion. In this thesis
we make novel contributions toward two particular nonprehensile manipulation tasks: quasistatic
planar pushing and dynamic nonprehensile object transportation.

This thesis is also focused on mobile manipulation. In contrast to traditional static (fixed-base)
manipulators, mobile manipulators have no fixed inertial base frame [14]; instead, the robot can
move around the environment while manipulating objects within it. Mobile manipulators include
underwater [15], wheeled [14], legged (typically humanoid [16] or quadrupedal [17]), aerial [18], and
space robots [19]. While our experiments are performed on a wheeled ground robot, the principles
are broadly applicable to other types of robots as well. Note also that mobile manipulators need
not have the morphology of an arm: for example, a small robot vacuum has no arms but could still
usefully manipulate an object by pushing it to a desired location. Mobility greatly expands the
workspace of the robot, so that it can perform many more tasks, but introduces new challenges
for localization, motion planning complexity, and motion smoothness. In this thesis we focus
on the latter two challenges, which motivate two of the main themes of our work: speed and
robustness. Speed refers to both movement speed (of the robot) and computation speed (for control
and planning). Industrial manipulators are designed to be able to move at high speed2, and we
want to exploit this potential agility without being limited by slow computational bottlenecks. At

2For example, the UR10 arm we use in this thesis has a maximum end effector speed of 5m/s.

CHAPTER 1. INTRODUCTION 3

Table 1.1: Assumptions and trade-offs for the different components of the thesis.

Chapter Motion Environment Assumptions Method

3 Quasistatic (slow) Planar Few Reactive (very fast)
4 Dynamic (fast) Spatial Many Online planning (fast)
5 Dynamic (fast) Spatial Some Offline planning (slower)

the same time, we want to be robust to parameter uncertainty (friction, inertial parameters, etc.) as
well as disturbances like vibrations introduced by fast motion. Each component discussed in this
thesis—described in more detail below—makes different robustness and speed trade-offs depending
on the task and available information, as shown in Table 1.1.

1.2 Outline

This thesis is structured as follows. Chapter 2 provides background information on the physics
of robotic manipulation and on the optimization tools that are used in the subsequent chapters.
Chapter 3 describes the development of a controller for the task of quasistatic planar pushing, in
which a robot pushes an object in a two-dimensional plane with a single point of contact. This
relatively simple setting allows us to make few assumptions about the properties of the object
being pushed and the available sensing modalities. In particular, we assume that the frictional,
inertial, and geometric properties of the object are unknown, except that we assume its shape
is convex, and we use only the measured contact force to sense the pushed object—we do not
use vision or tactile information. In Chapter 4, we consider a more complex three-dimensional
nonprehensile object transportation task known as the waiter’s problem, which requires the robot
to transport objects from one location to another while keeping them balanced on a tray at the
end effector (EE) and avoiding static and dynamic obstacles, like a restaurant waiter. We use a
whole-body constrained model predictive controller (MPC), which plans using the minimal friction
coefficients to provide robustness to frictional uncertainty, but we assume that the geometry and
inertial properties of the transported objects are known. In Chapter 5, we consider the case when
the inertial properties of the objects are not known exactly. We study the set of physically realizable
inertial parameters for a given object shape, and extend our MPC to an offline planning method
that produces trajectories with verifiable robustness to frictional and inertial parameter uncertainty.
Some additional results on physically realizable inertial parameters are provided in Appendix A.
Finally, Chapter 6 summarizes the thesis and discusses directions for future work.

1.3 Novel Contributions

This thesis makes the following novel contributions:

• Chapter 3: We develop the first controller for robotic single-point pushing using only force
feedback to sense the pushed object, which was published in [1] (see below for the full

CHAPTER 1. INTRODUCTION 4

citation). We show that the controller successfully pushes objects along both straight and
curved paths with single-point contact and no model of the object. We demonstrate the
robustness of the controller by simulating pushes using a wide variety of slider parameters
and initial states. We also present real hardware experiments in which a mobile manipulator
successfully pushes different objects across a room along straight and curved paths, including
some with static obstacles. Notably, we do not assume that sufficient friction is available to
prevent slip at the contact point; slipping is a natural part of the behaviour of our controller
and does not necessarily lead to task failure.

• Chapter 4: We propose the first whole-body MPC for a mobile manipulator solving the
waiter’s problem, which was published in [2]. It is also the first approach to the waiter’s
problem that handles dynamic obstacles. Compared to existing MPC-based approaches to this
problem, which have only been demonstrated on fixed-base arms, our controller optimizes
the joint-space trajectory online directly from task-space objectives and constraints, without
the use of a higher-level planning step. In addition, the controller uses the minimum statically
feasible friction coefficients, which provides robustness to frictional uncertainty, vibration,
and other real-world disturbances. When the minimum statically feasible friction coefficients
are zero, we show that the MPC problem can be solved more efficiently. Furthermore, we
present the first demonstrations of the waiter’s problem with a real velocity-controlled mobile
manipulator transporting up to seven objects; transporting an assembly of stacked objects;
and avoiding static and dynamics obstacles, including a thrown volleyball. The EE achieves
speeds and accelerations up to 2.0m/s and 7.9m/s2, respectively. Finally, we also present
some further experiments comparing against an additional baseline method, which were not
included in [2].

• Chapter 5: We develop a planner for nonprehensile object transportation that explicitly
handles objects with uncertain centers of mass (CoMs), which extends the framework from
Chapter 4 and was published in [3]. Furthermore, we perform a novel theoretical analysis of
the constraint satisfaction in the presence of a bounded CoM and any physically realizable
inertia matrix, based on moment relaxations [20] (a more computationally efficient version of
the analysis is explored in Appendix A). This is the first time that moment relaxations have
been used to characterize the set of physically realizable inertial parameters and the first time
that this set of parameters has been used to analyze the worst-case constraint satisfaction of
a robotic trajectory. Finally, simulations and hardware experiments demonstrating that our
proposed robust constraints successfully balance the object—despite using tall objects with
high inertial parameter uncertainty—while baseline approaches drop the object.

1.4 Publications

This thesis is based on the following publications:

CHAPTER 1. INTRODUCTION 5

[1] A. Heins and A. P. Schoellig, “Force Push: Robust Single-Point Pushing with Force Feedback,”
IEEE Robotics and Automation Letters, vol. 9, iss. 8, pp. 6856–6863, 2024.

• doi: 10.1109/LRA.2024.3414180

• Video: http://tiny.cc/force-push

• Software: https://github.com/utiasDSL/force push

[2] A. Heins and A. P. Schoellig, “Keep it Upright: Model Predictive Control for Nonprehensile
Object Transportation with Obstacle Avoidance on a Mobile Manipulator,” IEEE Robotics and

Automation Letters, vol. 8, iss. 12, pp. 7986–7993, 2023.

• doi: 10.1109/LRA.2023.3324520

• Video: http://tiny.cc/keep-it-upright

• Software: https://github.com/utiasDSL/upright

[3] A. Heins and A. P. Schoellig, “Robust Nonprehensile Object Transportation with Uncertain
Inertial Parameters,” IEEE Robotics and Automation Letters, vol. 10, iss. 5, 4492–4499, 2025.

• doi: 10.1109/LRA.2025.3551067

• Video: http://tiny.cc/upright-robust

• Software: https://github.com/utiasDSL/upright

Additional contributions include [4] and [5]. In [4], we provide a system overview of our
mobile manipulator using differential inverse kinematics control, including the ability to do force
regulation, obstacle avoidance, and manipulability maximization. We also perform an extremely
preliminary experiment with force-based pushing, which eventually led to the approach developed
in [1] (Chapter 3). In [5], we propose a method for online learning with Gaussian processes that
provides robustness guarantees in the face of dynamic model uncertainty; the author of this thesis
was specifically responsible for the controller implementation and experiments.

[4] A. Heins, M. Jakob, and A. P. Schoellig, “Mobile manipulation in unknown environments
with differential inverse kinematics control,” in Proc. Conf. Robots and Vision, 2021, pp. 64–71.

[5] M. K. Helwa, A. Heins, and A. P. Schoellig, “Provably robust learning-based approach for
high-accuracy tracking control of Lagrangian systems,” IEEE Robotics and Automation Letters,
vol. 4, iss. 2, pp. 1587–1594, 2019.

https://doi.org/10.1109/LRA.2024.3414180
http://tiny.cc/force-push
https://github.com/utiasDSL/force_push
https://doi.org/10.1109/LRA.2023.3324520
http://tiny.cc/keep-it-upright
https://github.com/utiasDSL/upright
https://doi.org/10.1109/LRA.2025.3551067
http://tiny.cc/upright-robust
https://github.com/utiasDSL/upright

Chapter 2

Background

2.1 Rigid Bodies

Our goal is make robots manipulate objects in three-dimensional space. In this thesis, we limit
ourselves to the manipulation of rigid bodies, which are three-dimensional objects whose shape
does not change or deform when subjected to external forces. Many common objects can be
well-approximated as rigid bodies.

2.1.1 Geometry and Kinematics

The three-dimensional pose of a rigid body consists of its position r ∈ R3 and rotation C ∈ SO(3).
We can gather these two quantities together into the homogeneous transformation matrix

T =

[
C r

0T 1

]
∈ SE(3).

The spatial velocity of a rigid body is

ξ ≜

[
ω

v

]
∈ R6,

where ω ∈ R3 is the angular component and v ∈ R3 is the linear component. The spatial
acceleration ξ̇ is simply the time derivative of the spatial velocity.1 In the two-dimensional (planar)
case, we instead have T ∈ SE(2) with C ∈ SO(2) and r ∈ R2, and ξ = [ω,vT]T ∈ R3

with ω ∈ R and v ∈ R2; we will indicate when we are working in a spatial or planar context when
needed to avoid confusion.

1Note that the linear component of the spatial acceleration is not the same as the classical linear acceleration. For
more information on spatial vectors and spatial algebra, see Featherstone [21].

6

CHAPTER 2. BACKGROUND 7

2.1.2 The Newton-Euler Equations

A spatial wrench

w ≜

[
τ

f

]
∈ R6

consists of a torque τ ∈ R3 and a force f ∈ R3. The motion of a rigid body is governed by the
Newton-Euler equations

wC = wGI, (2.1)

where wC is the contact wrench (CW) and wGI is the gravito-inertial wrench (GIW); in this thesis
we assume that the only external forces affecting objects are contact forces and gravity. Expressed
in a frame that moves with the body (the body frame), we have

wGI = Ξη − ad(ξ)TΞξ, (2.2)

where Ξ ∈ S6+ is the object’s spatial mass matrix,

ad(ξ) ≜

[
ω× 0

v× ω×

]

is the adjoint of ξ with

a× =

 0 −a3 a2

a3 0 −a1
−a2 a1 0


forming a skew-symmetric matrix from a vector a = [a1, a2, a3]

T such that a×b = a × b for
any a, b ∈ R3, and η = [ω̇T , v̇T − gT]T is the difference between the spatial acceleration ξ̇ =

[ω̇T , v̇T]T and the body-frame gravitational acceleration g ∈ R3. In the two-dimensional case, the
planar wrench is w = [τ,fT]T ∈ R3 with torque τ ∈ R and force f ∈ R2.

2.1.3 Inertial Parameters

The mass m ∈ R+, center of mass (CoM) c ∈ R3, and inertia matrix

I =

Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz

 ∈ S3+

of a rigid body are referred to as its inertial parameters. The inertial parameters can be represented
in a variety of ways.

CHAPTER 2. BACKGROUND 8

x

y

1 1

m = 0.5 m = 0.5

Figure 2.1: Two point masses located along the x-axis. The z-axis comes out of the page.

Spatial Mass Matrix One way of representing the inertial parameters is through the spatial
mass matrix we saw in (2.2), defined as

Ξ ≜

[
I mc×

mc×
T

m13

]

and expressed with respect to the origin of the body frame.

Pseudo-Inertia Matrix Another way of representing the inertial parameters is using the pseudo-
inertia matrix [22], defined as

Π ≜

[
S mc

mcT m

]
, (2.3)

where S is known as the second moment matrix [23]. Given a mass density function ρ : R3 → R+,
we can write S as the integral

S =

∫
R3

ρ(r)rrTdr. (2.4)

In contrast, the inertia matrix I is given by the integral

I = −
∫
R3

ρ(r)r×r×dr.

The two are related by the (linear) identities

I = tr(S)13 − S, S = (1/2) tr(I)13 − I,

where tr(·) denotes the matrix trace. Qualitatively, S encodes the spread of the mass distribution
while I encodes its ability to resist rotation. For example, consider a system of two point masses,
each with mass 0.5, placed at ±1 unit distance from the origin along the x-axis, as shown in
Figure 2.1. We have

I =

0 0 0

0 1 0

0 0 1

 , S =

1 0 0

0 0 0

0 0 0

 ,

CHAPTER 2. BACKGROUND 9

where S shows that the mass is spread along the x-axis and I shows that such a spread resists
rotation about the y- and z-axes.

The pseudo-inertia matrix representation is convenient because Π ∈ S4++ is a necessary and
sufficient condition for the inertial parameters to be fully physically consistent [23]; that is, there
exists some mass density function ρ : R3 → R+ that realizes those inertial parameters, with the
relationship

Π =

∫
R3

ρ(r)r̃r̃Tdr,

which is analogous to (2.4) except using the homogeneous representation of the points r̃ = [rT , 1]T .
The strict positive definiteness requirement on Π excludes degenerate densities corresponding to
point, line, and plane masses. We will return to the idea of physically realizable inertial parameters
in Chapter 5 and Appendix A.

Linearity Finally, we note that the Newton-Euler equations (2.1) are linear in the inertial param-
eters [24], which we can make explicit by writing (2.2) in the form

wGI = Y (ξ,η)θ, (2.5)

where Y (ξ,η) ∈ R6×10 is known as the regressor matrix and

θ ≜ [m,mcT , Ixx, Ixy, Ixz, Iyy, Iyz, Izz]
T ∈ R10 (2.6)

is the inertial parameter vector, a third representation of the inertial parameters. Note that both Ξ

and Π are linear functions of θ. Define

L(ω) ≜

ωx ωy ωz 0 0 0

0 ωx 0 ωy ωz 0

0 0 ωx 0 ωy ωz

 , Λ(ξ) ≜

[
0 −v× L(ω)

v ω× 0

]
.

Then we have Y (ξ,η) = Λ(η)− ad(ξ)TΛ(ξ), which is independent of the inertial parameters.
This linear relationship also extends to systems of rigid bodies like serial manipulators, for which
we can find a linear mapping between the joint torques and the link inertial parameters analogous
to (2.5).

2.1.4 Zero-Moment Point

In some cases we are interested in keeping robots or objects balanced upright; that is, we do not
want them to tip over. Historically, particularly for legged robots, this condition has been encoded
by the zero-moment point (ZMP) [25], which is the point on the contact surface about which the
torques (moments) about the tangential directions are zero. In other words, the ZMP is the point at
which the contact torque balances the gravito-inertial torque in the contact plane, which we can

CHAPTER 2. BACKGROUND 10

express mathematically as

n̂× τGI = n̂× (rZMP × fC),

n̂T (rZMP − r0) = 0,
(2.7)

where n̂ is a unit vector along the contact normal, rZMP is the position of the ZMP and r0 is an
arbitrary point on the contact surface [26]. Rearranging the equations in (2.7), we obtain

rZMP =
n̂× τGI + (n̂Tr0)fC

n̂TfC
.

Recalling from (2.1) that fC = fGI, we see that the ZMP is entirely a function of the GIW and the
contact surface. The support area (SA) of an object with respect to a given contact surface is the
convex hull of the contact points on that surface (see Figure 2.3). The object does not tip if the ZMP
is inside the SA.

2.2 Robotic Manipulation

2.2.1 Geometry and Kinematics

Robotic manipulation is concerned with making robots (most commonly a robotic arm) move
objects in a useful way. Objects are positioned in task space T , but the configuration (or generalized
position) of a robot belongs to its configuration spaceQ, which corresponds to the robot’s DOFs [27].2

We typically use T = SE(3) for spatial (three-dimensional) problems or T = SE(2) for planar
(two-dimensional) problems.

Forward Kinematics The mapping from configuration space to task space is called forward

kinematics (FK), and is typically easy to compute in closed-form. We write the forward kinematic
mapping as

T = FK(q), (2.8)

where T ∈ T and q ∈ Q is the robot’s generalized position. The mapping from joint space to task
space on the velocity level is called differential kinematics; we have

J(q)ν = ξ, (2.9)

where J is the (geometric) Jacobian of the manipulator, ν ∈ Rnν is the robot’s generalized velocity,
and ξ is the spatial velocity of the EE.

Inverse Kinematics For the purposes of planning and control, we are also interested in deter-
mining which configuration(s) corresponds to a particular desired EE position or pose. This is called

2It is common to refer to the configuration space as the joint space, particularly when dealing with robotic arms,
because each dimension of Q typically corresponds to one of the arm’s joints.

CHAPTER 2. BACKGROUND 11

inverse kinematics (IK), and is typically much harder than forward kinematics—in general, zero,
one, or infinite solutions may exist. In this thesis, we typically approach this problem by including
the kinematic relationship between task and joint space as a constraint in an optimization problem.
We either include the FK equation (2.8) directly as a nonlinear constraint, or use the differential
relationship (2.9), which is conveniently linear in ν .

2.2.2 Friction and the Contact Wrench Cone

µ

11

n̂

Figure 2.2: The Coulomb fric-
tion cone with friction coeffi-
cient µ and contact normal n̂.
The dashed lines show the lin-
earized inner approximation.

The interaction between the robot and manipulated objects is gov-
erned by frictional contacts, the mechanics of which we describe
here.

Coulomb Friction We assume friction obeys Coulomb’s law,
which states that the magnitude of the frictional force cannot exceed
the magnitude of the normal force scaled by a constant µ ∈ R+,
called the friction coefficient. We make no distinction between static
and kinetic friction. Mathematically, a contact force f ∈ R3 must
live inside the friction cone (see Figure 2.2), satisfying

∥ft∥2 ≤ µfn, (2.10)

where ft = [ft1 , ft2]
T is the friction force with components ft1 =

fT t̂1 and ft2 = fT t̂2 along the tangent directions t̂1 and t̂2,
and fn = fT n̂ is the normal force along the contact normal n̂.
The corresponding feasible pushing velocities are described by the
motion cone [13]. We typically linearize (2.10) (see e.g. [28]) to obtain the pyramidal approximation

∥ft∥1 ≤ µfn, (2.11)

which is an inner approximation of (2.10), meaning that any f satisfying (2.11) also satisfies (2.10).

Limit Surface When two objects are in contact at a surface rather than a just a single point, the
friction cone can be generalized to the limit surface [29]—a closed, convex set that describes the set of
feasible friction wrenches that can be supported by the contact. That is, it describes the two frictional
forces along the contact’s tangential directions as well as their relationship with the frictional
torque about the contact normal. The limit surface may be approximated as an ellipsoid [30] or
more general models, such the level set of a homogeneous even-degree polynomial [31]. While
the limit surface can be useful when modelling a single object, for general assemblies of multiple
objects, it is easier to reason about the contact wrench cone, which we describe next.

CHAPTER 2. BACKGROUND 12

C1

C2

C3

C4

Figure 2.3: A red box in frictional surface contact with a gray tray. The contact surface (blue) can
be approximated by nc contact points {Ci}nc

i=1 at its vertices, each with a corresponding contact
force fi that lives inside its friction cone (one friction cone shown in green). The object’s support
area is the convex hull of its contact points, which in this case coincides with the contact surface.

Contact Wrench Cone Suppose a manipulated object has nc contact points {Ci}nc
i=1 with

corresponding contact forces {fi}nc
i=1 (see Figure 2.3). We can express each friction cone (2.11) as

Fifi ≤ 0, (2.12)

where

Fi =


0 0 −1
1 1 −µi

1 −1 −µi

−1 1 −µi

−1 −1 −µi


[
t̂i1 t̂i2 n̂i

]T
.

Let ζ = [fT
1 , . . . ,f

T
nc
]T . Then we can write the linearized friction cone for all nc contact forces in

matrix form as
Fζ ≤ 0, (2.13)

where F = diag(F1, . . . ,Fnc) is a block diagonal matrix. The CW acting on the object is

wC ≜

[
τC

fC

]
=

nc∑
i=1

Gifi, (2.14)

where τC and fC are the total contact torque and force and

Gi =

[
r×i
13

]

CHAPTER 2. BACKGROUND 13

x

y

Figure 2.4: Planar examples of frictional contact. Left: A single frictional contact can push but
not pull: the blue finger can instantaneously apply a force to push the red block in the positive x-
direction, but cannot pull it in the negative x-direction, since no forces with negative x-component
are contained in the friction cone (green). The block is in neither force nor form closure. Center:
The red block is held in force closure by the blue fingers. If there was no friction at the contacts,
such that the friction cone collapses to a line along the contact normal, then the body would not be
in force closure, because the contacts could not resist a force along the y-axis. Right: The red block
is in form closure, which means the contacts prevent it from moving even without any friction.

is transpose of the ith contact Jacobian3 with ri the location of Ci expressed in the body frame. The
setWC of all possible contact wrenches is known as the contact wrench cone (CWC) [32], which is
a polyhedral convex cone (PCC) containing all CWs that can be produced by feasible contact forces.
We have

WC = {Gζ | Fζ ≤ 0} ⊆ R6, (2.15)

where G = [G1, . . . ,Gnc] is known as the grasp matrix.

2.2.3 Prehensile and Nonprehensile Manipulation

Intuitively, a frictional contact allows the robot to push but not pull. We can think of prehensile
manipulation as the case when the manipulated object has a sufficient set of contacts to be “pushed”
in any direction. More precisely, prehensile manipulation focuses on generating grasping configu-
rations that ensure a manipulated object is in force or form closure. An object is said to be in force

closure if the contact forces can resist any applied wrench; that is, ifWC = R6 (orWC = R3 in
the planar case). An object is said to be in form closure if any wrench can be resisted even when
the contacts are frictionless (i.e., considering only the contact normals; see Figure 2.4) [27, §12.2].
Form closure implies force closure. In either case, the object does not retain any independent
degrees of freedom, so the controller or motion planner can simply treat the grasped object as a
rigid attachment to the robot. In contrast, this thesis is concerned with nonprehensile manipulation,
which refers to the case when the object is not in force closure and therefore retains independent

degrees of freedom. This means that our control and planning algorithms have to model the object
3The contact Jacobian maps the spatial velocity of the body to the linear velocity of the contact point.

CHAPTER 2. BACKGROUND 14

A B

n̂

Figure 2.5: Two objects, A and B, in contact at a single point. The contact mode may be sticking,
sliding, or separating.

dynamics in addition to those of the robot, while also taking into account the mechanics of contact
between them.

Hybrid Dynamics In general, nonprehensile manipulation tasks exhibit hybrid dynamics, be-
cause the robot-object system dynamics undergo discrete changes depending on the contact mode.
Each contact point can be in one of three modes: sticking, sliding, or separating. Sticking means
that the relative velocity between the robot and object at the contact point is zero, so they “stick”
together (at that point). Sliding means that the robot and object are sliding with respect to each
other at that point, and (2.10) is satisfied with equality. Separating means that the robot and object
are moving away from each other at that point. For example, consider two objects, A and B, in
contact at a single point with contact normal n̂ pointing out of A and into B, as shown in Figure 2.5.
Let va be the velocity of the contact point on A, and let vb be the velocity of the contact point on B.
Then we have the following contact mode conditions:

• Sticking: va = vb,

• Sliding: n̂T (va − vb) = 0, n̂× (va − vb) ̸= 0,

• Separating: n̂T (va − vb) < 0.

Dealing with these hybrid dynamics is one of the main challenges of nonprehensile manipulation.
One approach is to use mixed-integer programming (e.g., [33], [34]), but this scales combinatorially
in the number of modes.

Force Optimization Problem Instead of reasoning about the full hybrid dynamics, in some
applications (such as nonprehensile object transportation in Chapters 4 and 5) we want to constrain
the system to stay in a single specific mode. In particular, to stay in the sticking mode, we want to
ensure there exist contact forces that can balance a given GIW wGI, such that wGI ∈ WC. This is
typically formulated as an optimization problem over the contact forces ζ, and is therefore known
as the force optimization problem [35]. Contact surfaces are handled by discretizing them into a
finite set of contact points at their boundaries. This approach allows us to handle arbitrary contacts
between multiple objects, in contrast to constraints based on the limit surface and ZMP, which
cannot be applied to closed contact loops (e.g., three objects all in contact with one another).

CHAPTER 2. BACKGROUND 15

2.3 Optimization

Each component of this thesis requires the solution of optimization problems to generate control
inputs, desired trajectories, or to analyze the effect of parameter choices. We briefly introduce
the main problem classes here. For more details, see [36] on convex programming in particular
and [37] on numerical optimization algorithms in general.

2.3.1 Quadratic Programming

The first optimization problem class of interest is the quadratic program (QP), which has the form

minimize
x∈Rn

(1/2)xTQx+ pTx

subject to Ax = b

Gx ≤ h,

where we are trying to minimize a quadratic objective function subject to affine constraints. The
values (Q,p,A, b,G,h) are collectively referred to as the problem data, and (Q,A,G) are referred
to specifically as the data matrices. When Q ∈ Sn+, the problem is convex, which means that any
local minimum is also a global minimum. Convex problems can typically be solved very efficiently:
intuitively, we can always walk downhill toward the global minimum without worrying about
getting stuck in a non-global local minimum along the way. Indeed, QPs can be efficiently solved
using a variety of algorithms, including interior point, active set, and first-order methods [38]. In
this thesis, we make use of the ProxQP [38] and HPIPM [39] QP solvers.

Differential Inverse Kinematics Control As we will see in Chapter 3, a common use of QPs in
robotic manipulation is differential inverse kinematics control, a control scheme in which the inverse
kinematics problem is solved online on the velocity (differential) level. At each control timestep,
we compute the commanded generalized velocity by solving a QP that looks something like

minimize
ν

(1/2)∥ν∥22
subject to Jν = ξ,

νmin ≤ ν ≤ νmax,

(2.16)

where in this case we are trying to find the joint velocities with minimum 2-norm that achieve
some given task-space velocity ξ while respecting some limits on the generalized velocity.4 QPs
also form the key building block of a powerful approach for solving nonlinear programs known as
sequential quadratic programming, which we will discuss below.

4Without the limits on ν , (2.16) is an equality-constrained QP and has the closed-form solution ν⋆ = J+ξ,
where J+ = JT (JJT)−1 is the (right) pseudo-inverse of J .

CHAPTER 2. BACKGROUND 16

2.3.2 Optimal Control

We will also consider finite-horizon optimal control problems (OCPs) of the form

minimize
x,u

ℓf (xK) +

K−1∑
k=0

ℓ(xk,uk)

subject to x0 = x̄0

xk+1 = f(xk,uk), k = 0, . . . ,K − 1,

g(xk,uk) ≤ 0, k = 0, . . . ,K − 1,

gf (xK) ≤ 0,

(2.17)

where K is the number of steps in the horizon, x = [xT
0 , . . . ,x

T
K]T is the state trajectory, u =

[u0, . . . ,u
T
K−1]

T is the input trajectory, ℓ(xk,uk) is the stage cost, ℓf (xK) is the terminal cost,
x̄0 is the current state, xk+1 = f(xk,uk) is the dynamics equation, g(xk,uk) ≤ 0 is the stage
constraint, and gf (xK) is the terminal constraint. MPC solves OCPs repeatedly online at each
control timestep, as we will see in Chapter 4. Alternatively, in Chapter 5, we solve an OCP once
offline with a long horizon to generate a full trajectory to subsequently track.

Sequential Quadratic Programming In this thesis, we use sequential quadratic programming
(SQP) to solve the OCP (2.17). In general, SQP solves a nonlinear program (NLP) of the form5

minimize
z

c(z)

subject to g(z) ≤ 0,
(2.18)

where we will assume that both c and g are twice-differentiable. The SQP approach is to solve a
sequence of QPs approximating (2.18) until the solution converges [37, §18]. At each iterate, we
obtain a step ∆z by solving the QP

minimize
∆z

(1/2)∆zT∇2L(z,λ)∆z +∇c(z)T∆z

subject to G(z)∆z ≤ 0,
(2.19)

where
L(z,λ) = c(z) + λTg(z)

is the Lagrangian of (2.18) with Lagrange multipliers λ,∇2L is its Hessian, and

G(z) =
∂g

∂z
(z).

5Equality constraints can be incorporated as double-sided inequalities.

CHAPTER 2. BACKGROUND 17

After solving (2.19) for the optimal step ∆z⋆, we update z ← z + α∆z⋆ and obtain new Lagrange
multipliers by solving the system of Karush-Kuhn-Tucker (KKT) conditions6 for (2.19). The step
size α ∈ (0, 1] is usually determined using line search or filter methods [37, §18.2].

Gauss-Newton Approximation In this thesis, our OCPs have a least-squares objective function
of the form c(z) = e(z)TWe(z). We therefore make the Gauss-Newton (GN) approximation [40,
§8.6]

∇2L(z,λ) ≈ ∇2c(z) = E(z)TWE(z),

where
E(z) =

∂e

∂z
(z).

The GN approximation ensures the Hessian is positive semidefinite, and therefore (2.19) is convex.
Furthermore, we only need first-order differentiability in e(z) and g(z), and we do not need to
worry about the Lagrange multipliers λ.

Interior Point Methods Another popular class of algorithms for solving NLPs are interior

point (IP) methods, so-called because they use barrier functions to ensure the current solution
iterate is always in the interior of the feasible set. While IP methods are typically faster on larger
problems [41], SQP methods are attractive for online control because they can be efficiently warm-
started from one control timestep to the next [40, §8.7]. Furthermore, the QP solver we use to
solve (2.19) (HPIPM [39]) is designed to exploit the sparse structure of the data matrices arising from
the Markov property of the dynamics constraint in (2.17), leading to highly efficient performance.7

Real-Time Iteration If we were only solving a single NLP (2.18), it would make sense to
iteratively build and solve (2.19) until the solution converges. However, in online settings like MPC,
a new but similar problem is solved at each control timestep. Instead of iterating to convergence
from the current state at each timestep, it makes more sense to update the state to the most recent
estimate at each iteration and solve a new iteration from there. This approach is known as real-time

iteration (RTI) [42], and it is a key ingredient for fast model predictive control.

Soft Constraints In an online control setting, it is usually unacceptable for the controller to
simply fail because the optimal control problem is infeasible. In particular, state constraints
often represent desirable conditions that are not always actually achievable, depending on the
disturbances to the system [40, §1.2]. In this case, we can soften a state constraint by introducing
an additional decision variable s ≥ 0, called a slack variable. For example, suppose we have a

6The KKT conditions are a set of first-order necessary conditions for optimality; see [36, §5.5] or [37, §12.3] for more
information.

7This sparse structure is only present when optimizing over both state and input variables, which is known as
multiple shooting. In contrast, a single shooting approach eliminates the state variables using the dynamics constraint
and optimizes over only the inputs, resulting in fewer variables but dense data matrices. Multiple shooting typically
scales better with longer time horizons; see [40, §8.1].

CHAPTER 2. BACKGROUND 18

Figure 2.6: The mobile manipulator used to perform the experiments in this thesis. It consists of a
Clearpath Ridgeback mobile base, UR10 arm, Robotiq FT-300 wrist-mounted force-torque sensor,
and Robotiq 3-finger gripper. The planar pose of the base is tracked with a Vicon motion capture
system.

constraint g(x) ≤ 0 on the robot state x. We soften it to g(x) ≤ s and penalize s in the objective
using quadratic and/or linear penalties. The slack penalty weight determines the trade-off between
feasibility and constraint satisfaction.

2.3.3 Semidefinite Programming

Finally, in Chapter 5 we will also formulate and solve semidefinite programs (SDPs), so-called because
their decision variables are semidefinite matrices. A standard form SDP [36, §4.6] is written as

minimize
X∈Sn+

tr(A0X)

subject to tr(AiX) = bi, i = 1, . . . , np,

for symmetric data matrices Ai ∈ Sn, i = 0, . . . , np. SDPs are convex problems that can be
solved efficiently using off-the-shelf software such as MOSEK [43], which we use in this thesis via
CVXPY [44].

2.4 Experimental Platform

All of our hardware experiments are performed on our mobile manipulator platform shown in
Figure 2.6, which consists of a 3-DOF Ridgeback omnidirectional mobile base and and 6-DOF UR10
industrial robot arm. A Robotiq FT300 6-axis force-torque sensor is mounted on the wrist. A Robotiq
3-finger gripper is mounted at the end of the arm. The UR10 provides joint angle measurements
from its internal joint encoders at a frequency of 125Hz. We use a Vicon motion capture system to
provide pose measurements of the Ridgeback mobile base (and other objects in the environment)

CHAPTER 2. BACKGROUND 19

at 100Hz. The UR10 accepts joint velocity commands at 125Hz while the base accepts planar
velocity commands, which are converted to wheel velocities by its onboard controller, at 25Hz. The
FT sensor provides wrench measurements at approximately 63Hz. All of our experiments are run
on a standard laptop with eight Intel Xeon CPUs at 3GHz and 16GB of RAM running Ubuntu 20.04
with the Preempt RT real-time patch and communicating with the robot over ethernet with ROS
Noetic.

Chapter 3

Robotic Pushing With Force Feedback

In this chapter we investigate one of the most fundamental nonprehensile manipulation tasks:
planar pushing. In particular, we are interested in the case when the only measurements of the
pushed objects are the contact force at the robot’s end effector. It is based on the following
publication:

A. Heins and A. P. Schoellig, “Force Push: Robust Single-Point Pushing with Force
Feedback,” IEEE Robotics and Automation Letters, vol. 9, iss. 8, pp. 6856–6863, 2024.

This is the first single-point pushing scheme that uses only force feedback to sense the pushed
object.

3.1 Introduction

Pushing is a nonprehensile manipulation primitive that allows robots to move objects without
grasping them, which is useful for objects that are too large or heavy to be reliably grasped [45]. In
this work we investigate robotic planar pushing with single-point contact using only force feedback
to sense the pushed object (“the slider”), in contrast to previous works on single-point pushing,
which use visual or tactile sensing; e.g., [30], [46]–[48]. The “pusher” is an omnidirectional mobile
robot equipped with a force-torque (FT) sensor to measure the contact force applied by the robot’s
end effector (EE) on the slider through the contact point. The geometric, inertial (i.e., mass, center
of mass (CoM), and inertia), and frictional parameters of the slider are assumed to be unknown.
We also assume that online feedback of the slider’s pose is not available—the only measurement of
the slider is through the contact force. Finally, we assume that the global position of the pusher is
known at all times (i.e., the robot can be localized) and that motion is quasistatic.

Single-point pushing is a simple approach that does not require assumptions about the slider’s
shape. In particular, we envision our force-based approach being useful for pushing unknown
objects between distant waypoints, where reliable localization of the object is not available (e.g.,
due to poor lighting). For example, consider pushing objects through hallways within warehouses
or factories. In this case, we are not concerned about tracking a path exactly at all times, but rather

20

CHAPTER 3. ROBOTIC PUSHING WITH FORCE FEEDBACK 21

Force-torque
sensor

Figure 3.1: Our robot pushing a blue box across the floor using single-point contact. The contact
force is measured by a force-torque sensor in the robot’s wrist, but no other measurements of the
object are provided. A video of our approach is available at http://tiny.cc/force-push.

ultimately pushing the object from one place to another. Our approach can handle collisions with
obstacles like walls, using an admittance controller to regulate the contact force. Furthermore, we
hope that the insights presented here for force-based pushing can be combined with other sensing
modalities to improve overall performance.

The main contribution of this work is a controller for robotic single-point pushing using only

force feedback to sense the pushed object. We show that it successfully pushes objects along both
straight and curved paths with single-point contact and no model of the object. We demonstrate
the robustness of the controller by simulating pushes using a wide variety of slider parameters and
initial states. We also present real hardware experiments in which a mobile manipulator successfully
pushes different objects across a room (see Figure 3.1) along straight and curved paths, including
some with static obstacles. Notably, we do not assume that sufficient friction is available to prevent
slip at the contact point; slipping is a natural part of the behaviour of our controller and does not
necessarily lead to task failure. Our code is available at https://github.com/utiasDSL/force push.

We first briefly described a controller for single-point pushing based on force feedback in [4],
but we have substantially changed and augmented this approach here. In particular, we reformulate
the pushing control law, add a term to track a desired path, add admittance control to handle
obstacles, provide an analysis of its robustness in simulation, and perform more numerous and
challenging real-world experiments.

http://tiny.cc/force-push
https://github.com/utiasDSL/force_push

CHAPTER 3. ROBOTIC PUSHING WITH FORCE FEEDBACK 22

3.2 Related Work

Research on robotic pushing began with Mason [13], and a recent survey can be found in [45].
Early approaches were typically either open-loop planning methods that rely on line contact for
stability [49], [50] or feedback-based approaches using vision [46], [47] or tactile sensing [30],
[48]. Tactile sensing is the most similar to our work, though we assume only a single contact
force vector is available, rather than the contact angle and normal that a tactile sensor provides.
Furthermore, [30] only focuses on stable translational pushes (i.e., where the slider moves in a
constant direction) without path-tracking, and [48] assumes a model of the slider is available and
that there is sufficient friction to prevent slip.

An FT sensor is used with a fence to orient polygonal parts using a sequence of one-dimensional
pushes in [51], which was shown to require less pushes than the best sensorless alternative [52].
Another use of an FT sensor was in [53], where FT measurements are used to detect slip while
pushing. In contrast, we do not detect slip, and our controller can still successfully push an object
despite (unmeasured) slip.

In [54], a path planning method is proposed for pushing an object while exploiting contact
with obstacles in the environment. However, while we rely on an admittance controller to adjust
the commanded velocity based on sensed force, the approach in [54] exploits the geometry of the
obstacles to provide additional kinematic constraints on the slider’s motion. Furthermore, in [54]
the obstacles are assumed to be frictionless and the approach is limited to a disk-shaped slider,
while we demonstrate multiple slider shapes in contact with obstacles with non-zero friction.

More recent work uses supervised learning to obtain models of the complex pushing dynamics
arising from uncertain friction distributions and object parameters. In [55], the pushing dynamics
are learned using Gaussian process (GP) regression. In [56] the authors propose Push-Net, an
LSTM-based neural network architecture for pushing objects using an image mask representing
the slider’s pose. In [57], the analytical model of quasistatic pushing from [30] is combined with
a learned model, which maps the slider position and depth images to the inputs of the analytical
model.

Pushing is also a popular task for reinforcement learning (RL). RL with dynamics randomization
is used in [58] to train a pushing policy, which is then transferred to a real robot arm with no
fine-tuning. In [59], a multimodal RL policy is trained in simulation, which is hypothesized to
better represent the underlying hybrid dynamics of planar pushing compared to previous unimodal
policies. These supervised learning and RL works all rely on visual feedback to obtain (some
representation of) the object’s pose, and are also typically focused on pushing small objects on a
tabletop.

Another recent approach is to use MPC for fast online replanning. The GP-based model in [55] is
used for MPC in [60]. In [33], hybrid contact dynamics (with hybrid modes corresponding to sticking
and sliding of the contact point) are incorporated into the controller using approximate hybrid
integer programming. The approach based on mathematical programming with complementary
constraints in [34] is more computationally expensive than [33], but can handle complete loss

CHAPTER 3. ROBOTIC PUSHING WITH FORCE FEEDBACK 23

of contact between objects. In [61], the dynamics of pushing are modelled as a Markov decision
process, thus taking stochasticity into account. This allows the controller to adjust its speed based
on how much uncertainty can be tolerated for each part of the task. These works all depend on
feedback of the slider’s pose as well as a (learned or analytical) model of its dynamics. A linear
time-varying MPC approach and a nonlinear MPC approach are developed for nonholonomic
mobile robots pushing objects with line contact in [62] and [63], respectively. Line contact allows
the controller to assume the slider stays rigidly attached to the pusher as long as the friction cone
constraints are satisfied, similar to the open-loop planning approaches in [49] and [50]. However,
line contact requires the slider to have a flat edge to push against, which excludes, e.g., cylindrical
sliders.

Finally, quadruped robots have also been used to push objects across the ground [64] and up
slopes [65] while regulating the required pushing force. In [64], friction between the pusher and
slider is neglected so that the resulting MPC optimization problem is linear in both contact force
and contact location, and it is assumed that the slider’s measured pose is available. In [65], an
adaptive MPC framework is used to push objects with unknown (and possibly slowly varying)
mass and friction parameters; it is the only work that assumes the object model is unknown and
only interacts with it through the contact force, like we do. However, in [65] it is assumed that line
contact between pusher and slider is present, and curved paths are not considered. In contrast, we
consider single-point contact and show that our controller can push the slider along curved paths.

In summary, most methods assume at least visual or tactile feedback of the slider is available or
assume line contact. Many also require an a priori model of the slider and may be expensive to
evaluate if the hybrid dynamics are taken into account. None of these methods perform single-point
pushing using only force feedback to sense the slider.

3.3 Problem Statement

Our goal is to push an object along a given continuous planar pathpd(s) : R≥0 → R2, parameterized
by the distance s ≥ 0 from its start. In this work, we use paths made up of straight-line segments
and circular arcs. We assume we have a velocity-controlled pusher that is capable of measuring
the planar force f ∈ R2 it applies on the slider. Our controller must generate a commanded
velocity vcmd ∈ R2 for the pusher’s EE at each control timestep, which pushes the slider along the
desired path.

We assume that the motion of the slider is quasistatic (i.e., inertial forces are negligible), which
means that the slider does not move when not in contact with the pusher. We assume that the
slider’s geometric, inertial, and frictional properties are unknown, except that its shape is convex.
We also assume that the slider is a single, non-articulated body (e.g., no wheels or moving joints).
Finally, we assume that an approximate initial position of the slider is available, so that the robot
can be positioned such that it makes first contact with the slider by moving forward in the direction
of the desired path.

CHAPTER 3. ROBOTIC PUSHING WITH FORCE FEEDBACK 24

θf

θp

vp

f

c

pd(s)

∆c

Slider

p?
d t̂d

n̂d

x

y

Figure 3.2: Example of our pushing controller with a square slider. The goal is to push the slider
along the path pd(s) by pushing with velocity vp at the contact point c. The resulting contact
force f lies inside the friction cone (green). The pushing angle θp is proportional to the lateral
offset ∆c and difference between measured force angle and the desired path heading ∆f = θf − θd;
all angles are measured with respect to the global fixed frame. In this example, the pushing
velocity vp will eventually rotate the slider so that the contact force points back toward the desired
path. Depending on the contact friction coefficient µc, the contact point may slip along the slider’s
edge over the course of a trajectory.

3.4 Task-Space Pushing Controller

When the properties of the slider are known, we can predict its motion using the equations of
motion given in [30]. However, since we do not assume to know the geometry or inertial properties
of the slider, we do not rely on a particular mathematical motion model in our controller. Instead,
we use the following intuition—similar to Mason’s Voting Theorem [13]—to control the system
based on contact force measurements. Suppose the object is starting to turn counterclockwise, but
we would like the robot to push it straight, as in Figure 3.2. The contact force vector f will also
start rotating counterclockwise. To recover, we need to move the robot’s EE forward in a direction
even further counterclockwise to (eventually) push the slider back toward the desired straight-line
direction. That is, the EE needs to move so that the line connecting the contact point c and the
slider’s (unknown) CoM is kept parallel to the desired direction of motion.

This controller is essentially a proportional controller which acts on the pushing angle, except
that we actually need to turn further away from the desired path in order to ultimately correct the
error. This yields a behaviour that trades-off short-term error for long-term performance, which is
more typically seen in predictive controllers that consider the effect of their actions over a horizon.
A block diagram of the entire controller is shown in Figure 3.3; the different components are
described in the remainder of this and the following section.

CHAPTER 3. ROBOTIC PUSHING WITH FORCE FEEDBACK 25

3.4.1 Stable Pushing and Path-Tracking

Let vp ∈ R2 be the pushing velocity of the contact point, which, together with the contact force f ,
we express in polar coordinates with respect to the global frame as

vp = v

[
cos θp

sin θp

]
, f = ∥f∥

[
cos θf

sin θf

]
,

where v ≜ ∥vp∥ is the pushing speed. We will start by taking v to be constant and controlling the
pushing angle θp. We denote unit vectors with (̂·), such that f̂ is the unit vector pointing in the
direction of f . At the current timestep, let p⋆

d be the closest point on the desired path to the contact
point c (in practice we assume c is some fixed point on the pusher’s EE), where p⋆

d ≜ pd(s
⋆) with

s⋆ = argmin
s≥s̄

∥pd(s)− c∥2. (3.1)

The lower bound s̄ ≥ 0 is initialized to zero at the start of the trajectory and then updated at
each timestep using s̄← max(s̄, s⋆), which ensures that the values of s⋆ obtained from (3.1) are
monotonically increasing through time and therefore p⋆

d never moves backward along the path.
Let us attach a Frenet-Serret frame at p⋆

d with direction t̂d pointing tangent to (along) the path
and direction n̂d orthogonal to the path (see Figure 3.2). We denote the angle from the x-axis to t̂d

as θd. Our pushing control law is simply

θp = θd + (kf + 1)∆f + kc∆c, (3.2)

where kf , kc > 0 are tunable gains, ∆f = θf − θd is the signed angle between f̂ and t̂d, and ∆c =

n̂T
d (c − p⋆

d) is the lateral offset from the path. The ∆f term steers toward a stable translational
pushing direction and the ∆c term steers toward the desired path. Notice the gain on ∆f is (kf +1);
the +1 makes the pushing angle θp go beyond ∆f (with respect to θd), eventually rotating the object
back toward the desired pushing direction. Ultimately, the controller converges to a configuration
where the contact force points along the desired path. The controller does not depend explicitly
on any slider parameters, and can thus be used to push a variety of unknown objects. Notably,
we do not require knowledge of the support friction, pressure distribution, or contact friction,
which are often uncertain and subject to change. Furthermore, depending on the contact friction
coefficient µc, the contact point may slip or stick along the edge of the slider over the course of a
successful push.

In many cases we could just take vcmd = vp and skip to Section 3.5; however, there are a
number of additions we can make to our pushing controller to improve robustness and even handle
collisions between the slider and obstacles, which we discuss in the remainder of this section.

CHAPTER 3. ROBOTIC PUSHING WITH FORCE FEEDBACK 26

Admi�ance
controller

Inverse
kinematics
controller

Robot
vee vcmd u

pd(s)

q

f

qf

Pushing
controller

Figure 3.3: Block diagram of the system. The components of our controller (in green) use measure-
ments of the robot’s pose q and contact force f to produce joint velocity inputs u that push the
slider along a desired path pd(s).

3.4.2 Contact Recovery

It is possible that following the pushing angle produced by (3.2) will cause the pusher to lose contact
with the slider, especially with larger gains kf and kc. This can happen if the local curvature of the
slider is such that the angle θp points away from the current contact edge. Assuming quasistatic
motion, we know that the slider does not move after contact is broken. We will say that contact is
lost if ∥f∥ is less than some threshold fmin. In the absence of a meaningful force measurement
with ∥f∥ ≥ fmin, a reasonable approach is to just follow the desired path using the open-loop
(with respect to the contact force) control law

θo = θd − kc∆c, (3.3)

which just steers the EE toward the desired path. Notice that the sign of kc∆c is opposite to that
in (3.2); this is because here the pusher does not need to move away from the path to steer the
slider back toward it.

Let us now combine (3.2) and (3.3). Suppose that the pusher loses contact with the slider. Then
our approach is to rotate from the current pushing direction θp toward the open-loop angle θo

from (3.3). When contact is made again, such that ∥f∥ ≥ fmin, we switch back to (3.2). Thus the
combined EE velocity angle θee is given by

θee =

θ−ee + γ, if ∥f∥ < fmin

θp, otherwise,
(3.4)

where θ−ee is the value of θee from the previous control iteration and γ = θo − θ−ee with limit |γ| ≤
γmax. The corresponding EE velocity is vee = v [cos θee, sin θee]

T .
We have also experimented with contact recovery mechanisms that attempts to “circle back”

to the last contact point where ∥f∥ ≥ fmin. We found (3.4) to be somewhat more reliable in our
experiments, but a more sophisticated contact recovery mechanism is worth further investigation.

CHAPTER 3. ROBOTIC PUSHING WITH FORCE FEEDBACK 27

c

δmin

n̂o

Obstacle

Slider
Permi�ed
pushing
directions

Figure 3.4: Basic obstacle avoidance of the pusher. When the contact point c is within distance δmin

of an obstacle, the direction of motion is adjusted to not move any closer to it.

3.4.3 Obstacle Avoidance and Admittance Control

So far we have not said anything about obstacle avoidance. Consider the task of pushing an object
along a hallway. We will assume that the location of the walls is known to the controller, so the
pusher can avoid colliding with them. To do this, if the EE is within some distance δmin of an
obstacle, then we rotate vee by the smallest angle possible such that it no longer points toward
the obstacle (i.e., we want n̂T

o vee ≤ 0, where n̂o is the unit vector pointing from the EE to the
closest point on the obstacle; see Figure 3.4). However, since the geometry and pose of the slider
are not known, collisions between the slider and walls cannot be completely avoided, especially if
the hallway contains turns, so we need to handle these collisions. It turns out that the pushing
angle produced by (3.2) is still useful in many cases when the slider is in contact with obstacles.
However, we need to avoid producing excessively large forces by jamming the slider against an
obstacle, to prevent damage. We use an admittance controller to adjust the velocity when ∥f∥ is
above a threshold fmax. In particular, we compute a velocity offset

va =

ka(fmax − ∥f∥)f̂ if ∥f∥ > fmax,

0 otherwise,
(3.5)

where ka > 0 is a tunable gain, and finally generate our commanded EE velocity vcmd = vee + va.
The upshot of this admittance control scheme is that the commanded velocity vcmd is reduced
in the direction of f when ∥f∥ is large, and can even move opposite to f . To avoid excessive
movement opposite f , we found it useful to clamp the magnitude of vcmd back to at most v.

3.4.4 Force Filtering

The force measurements from our FT sensor are quite noisy, so we employ the exponential smooth-
ing filter

ffilt = βfmeas + (1− β)f−
filt,

CHAPTER 3. ROBOTIC PUSHING WITH FORCE FEEDBACK 28

where ffilt is the filtered force, fmeas is the raw measured force, and β = 1 − exp(−δt/τ) with
the δt the time between force measurements and τ > 0 the tunable filter time constant. We actually
use this filtering approach in both simulation and experiment; in simulation it helps to smooth
out numerical noise in the force values computed by the simulator. It should be assumed that all
references to f elsewhere in the paper refer to the filtered value.

3.5 Inverse Kinematics Controller

The pushing controller described in the previous section produces a desired velocity of the EE vcmd

in task-space. We use an inverse kinematics (IK) controller to realize the desired pushing velocity
while avoiding collisions between the robot body and known static obstacles. We use a planar
omnidirectional mobile robot with motion model q̇ = u, where q = [x, y, θ]T is the robot’s
configuration, consisting of the position (x, y) and the heading angle θ, and u is the corresponding
joint velocity input. We use the quadratic program-based differential inverse kinematics controller

u = argmin
ν

(1/2)∥νd − ν∥2

subject to Jc(q)ν = vcmd

−νmax ≤ ν ≤ νmax,

(3.6)

where νd = [0, 0, kω(θd−θ)]T is designed to minimize the linear velocity and the difference between
the robot’s heading θ and the path heading θd, with kω > 0 a tunable gain. The matrix Jc(q) is
the Jacobian of the contact point, and νmax is the joint velocity limit. This IK controller allocates
the joint velocities such that the desired EE velocity is achieved exactly while trading off between
small linear velocities and rotating to match the path’s heading. In the presence of obstacles, we
also add constraints to avoid collisions with the robot base. We model the base as a circle with
center (x, y). If any part of this circle is within distance δmin of an obstacle O, then we add the
constraint [n̂T

o , 0]ν ≤ 0 to (3.6), where n̂o is the unit vector pointing from (x, y) to the closest
point on O.

While here we have only considered a mobile robot with three DOFs, which is sufficient
to accomplish our pushing task, (3.6) has the structure of a standard IK controller and can be
augmented with additional DOFs, objectives, and constraints (see e.g. [4]), as long as the required
EE velocity for pushing is achieved.

3.6 Simulation Experiments

We first validate our controller in simulation with Box and Cylinder sliders representing the planar
sliders shown in Figure 3.5. We use the PyBullet simulator1. The Box has x-y side lengths ℓ = 1m

1We applied a small patch to PyBullet to improve sliding friction behaviour; see https://github.com/bulletphysics/
bullet3/pull/4539.

https://github.com/bulletphysics/bullet3/pull/4539
https://github.com/bulletphysics/bullet3/pull/4539

CHAPTER 3. ROBOTIC PUSHING WITH FORCE FEEDBACK 29

α
α

φ
φ

ρ

`

`

c
c

r r

Figure 3.5: Examples of two sliders, located at position r and orientation ϕ in the global frame.
The contact with the pusher is located at point c, which is distance α along the slider’s edge from
a reference point. The contact force must lie in the friction cone at the contact point (shown in
green).

Table 3.1: Controller parameters for simulation and hardware experiments.

Parameter Simulation Hardware Unit

v 0.1 0.1 m/s
kf 0.3 0.3 –
kc 0.1 0.5 rad/m
ka 0.003 0.003 s/kg
kω – 1 1/s
fmin 1 5 N
fmax 50 50 N
γmax 0.1 0.1 rad
δmin 0.1 0.1 m
τ 0.05 0.05 s

νmax – [0.5, 0.5, 0.25]T [m/s,m/s, rad/s]T

and height 12 cm; the Cylinder slider has the same height and radius ρ = 0.5m. Each has
mass m = 1kg with CoM located at the centroid. The pusher is a sphere of radius 5 cm and the
height of the contact point is 6 cm. For each slider, we assess the robustness of our controller by
running simulations in different scenarios, each of which has a different combination of lateral
offset, contact offset, slider orientation, contact friction, and slider inertia, as listed in Table 3.2. We
use the controller parameters listed in the Simulation column of Table 3.1. The simulation timestep
is 1ms and the control timestep is 10ms (i.e., the controller is run once every 10 simulation steps).
The friction coefficient between the slider and floor and obstacles is set to µo = 0.25. We also set
the contact stiffness and damping of the sliders to 104 and 102, respectively, for stability during
collisions between the slider and wall obstacles.2

2We also performed simulations with µo = 0.5 and with contact stiffness and damping of 105 and 103, respectively,
to ensure we could also handle variation in these parameters. The results are similar to those shown here.

CHAPTER 3. ROBOTIC PUSHING WITH FORCE FEEDBACK 30

Table 3.2: Initial states and parameters used for simulation. We refer to each combination of states
and parameters as a scenario, for a total of 35 = 243 scenarios per slider. The values of the 3× 3
inertia matrix I depend on the slider shape, with Î computed assuming uniform density and Imax

computed assuming all mass is concentrated in the outside wall of the Cylinder and in the vertices
of the Box.

Parameter Symbol Values Unit

Initial lateral offset ∆c0 −40, 0, 40 cm
Initial contact offset α0 −40, 0, 40 cm
Initial orientation ϕ0 −π/8, 0, π/8 rad
Contact friction µc 0, 0.5, 1.0 −
Slider inertia I 0.5Î , Î , Imax kg·m2

The position trajectories for each of the 35 = 243 scenarios per slider are shown in Figure 3.6
with straight desired paths. Our controller successfully steers both sliders to the desired path along
the positive x-axis for every scenario using the same controller parameters. While kc could be
increased to reduce the deviation from the desired path, we found that a larger kc did not converge
to a stable translational push for all scenarios. The results of the same scenarios are shown in
Figure 3.7 with a curved desired path, with and without walls simulating a hallway corner. Without
the walls, there is overshoot at the turn before the slider ultimately returns to the desired path. With
the walls, the slider collides with the wall and the pushing velocity is adjusted by the admittance
controller (3.5) before again eventually returning to the desired path.

Individual sample trajectories are shown in Figure 3.8 and Figure 3.9. In Figure 3.8, we compare
two trajectories along the straight-line path to demonstrate how the behaviour of the system
changes when sufficient friction to prevent slip at the contact point is not available. The two
scenarios are the same except that one has no contact friction (µc = 0) and the other has high
contact friction (µc = 1). With no contact friction, we see that the contact point quickly slides to
the middle of the contact edge. In contrast, with high friction, the contact point does not slip and a
stable translational push is achieved with a large angle between the contact normal and pushing
direction. In both cases, the closed-loop system successfully converges to the desired path along
the x-axis. In Figure 3.9, we show a trajectory along the curved path with walls. After colliding
with the wall, the pusher actually switches the contact edge3 for the remainder of the trajectory.
The contact point slides along the original edge while attempting to turn the slider, eventually
briefly losing contact and circling back toward the path due to (3.4), ultimately making contact
again on a different edge of the slider.

3Technically it is a contact face since the sliders are three-dimensional objects, but we will say edge given our planar
context.

CHAPTER 3. ROBOTIC PUSHING WITH FORCE FEEDBACK 31

−1

0

1

Cylinder

0 5 10 15 20 25 30

x [m]

−1
0

1

Box

y
[m

]

1
Figure 3.6: Simulated trajectories for all 243 scenarios given in Table 3.2 for the Box and Cylinder
sliders shown in Figure 3.5. Each trajectory has a duration of 5min. All trajectories converge to
the desired straight-line path using our control law. The point of maximum deviation from the path
for any of the trajectories is marked with a star.

0 3 6 9

0

5

10

15

20

25

0 3 6 9 0 3 6 9 0 3 6 9

SquareCylinder Box

x [m]

y
[m

]

1
Figure 3.7: Simulated trajectories for the Box and Cylinder sliders along a curved path, with and
without walls (in red) simulating a corridor. All trajectories again converge despite collisions with
the wall. The point of maximum deviation from the path for any of the trajectories is marked with
a star.

CHAPTER 3. ROBOTIC PUSHING WITH FORCE FEEDBACK 32

−2

−1

0

1

2

µc = 0

0 2 4 6 8 10 12 14

x [m]

−2

−1

0

1

2

µc = 1

y
[m

]

1
Figure 3.8: Samples of simulated trajectories of the Box slider with the straight desired path along
the x-axis. Each image of the slider is taken 10 s apart. The slider has initial state (x0, y0, s0, ϕ0) =

(0,−40 cm,−40 cm,−π/8) and uniform density inertia. Results are shown for low and high
contact friction. Pusher and pushing direction are shown in black, initial contact edge is highlighted
in green. With µc = 0, the contact point ultimately slides to the center of the contact edge;
with µc = 1, the contact point does not slide.

CHAPTER 3. ROBOTIC PUSHING WITH FORCE FEEDBACK 33

0 2 4 6

x [m]

−2

0

2

4

6

y
[m

]

1
Figure 3.9: Left: A sample simulated trajectory of the Box slider along the curved path with
walls. Each image of the slider is taken 5 s apart. The slider has initial state (x0, y0, s0, ϕ0) =

(0,−40 cm,−40 cm,−π/8), a uniform density inertia, and µc = 0. Pusher and pushing direction
are shown in black; the walls are red. The initial contact edge of the slider is highlighted in green.
After contact with the wall, the pusher switches edges for the remainder of the trajectory. Right:
An image of the simulation, with red pusher, blue slider, and green walls. Readers are encouraged
to watch the video to see this in more detail.

CHAPTER 3. ROBOTIC PUSHING WITH FORCE FEEDBACK 34

Figure 3.10: Left: The “Box” and “Barrel” sliders used for real-world experiments. Each is empty
except for 2.25 kg weights located approximately at the colored circles. The red weights are always
present, but we add or remove the green weight to vary the mass and pressure distribution of the
box. When both weights are present, we refer to the slider as “Box2”; with a single weight it is
called “Box1”. The Barrel has radius 20.5 cm, height 56 cm, and total mass 4.5 kg. The Box has
width 65 cm, depth 33 cm, and height 43 cm; the total mass of Box1 is 4.8 kg and of Box2 is 7 kg.
The friction coefficients with the ground were estimated to be approximately 0.3–0.4 on average
for both objects. Right: The robot pushing the Box along the curved trajectory, shortly after the
slider first makes contact with the “wall” (we use overturned tables).

3.7 Hardware Experiments

We now demonstrate our controller in real-world experiments. The robot used for pushing is a
mobile manipulator consisting of a UR10 arm mounted on a Ridgeback omnidirectional base (see
Figure 3.1). The arm’s wrist is equipped with a Robotiq FT 300 force-torque sensor. A tennis ball
mounted at the EE is used to contact the slider. Since we are only pushing in the x-y plane, we fix
the joint angles of the arm and only control the base using (3.6)—the arm is used only for the FT
sensor. The base is localized using a Vicon motion capture system that provides pose measurements
at 100Hz, which is also used to record the trajectories of the sliders (but the slider poses are not

provided to our controller). The FT sensor provides force measurements at approximately 63Hz,
the mobile base accepts commands at 25Hz, and we run our control loop4 at 100Hz. A video of
the experiments can be found at http://tiny.cc/force-push.

We test our controller’s ability to push three sliders: Barrel, Box1, and Box2 (shown and
described in Figure 3.10). The height of the contact point is constant and we assume it is low enough
that the sliders do not tip over. For each experiment, the slider starts slightly in front of the EE
with various lateral offsets; the robot moves forward until contact is made (i.e., ∥f∥ ≥ fmin). For
smoothness, the EE accelerates at a constant rate over 1 s to reach the constant desired pushing
speed v. We use ProxQP [38] to solve (3.6). For obstacle avoidance, we model the base as a circle
of radius 55 cm. We use the controller parameters in the Hardware column of Table 3.1, which
are the same as in simulation except for increased values of kc and fmin. A lower value of kc was
required in simulation so that the trajectory converged to the desired path for all combinations
of parameters, but for these real-world experiments we found that a higher kc improves tracking

4We could reduce the control frequency to match the slower command frequency of the robot, but our approach (a)
ensures the most up-to-date command is sent to the robot, and (b) demonstrates the efficiency of the controller.

http://tiny.cc/force-push

CHAPTER 3. ROBOTIC PUSHING WITH FORCE FEEDBACK 35

−0.5

0.0

0.5

Barrel

−0.5

0.0

0.5

y
[m

]

Box1

0 1 2 3 4 5 6
x [m]

−0.5

0.0

0.5

Box2

1Figure 3.11: Position trajectories for real sliders pushed along a straight path starting from various
lateral offsets. Ten trajectories using our pushing control law are shown for each slider (in blue),
with the point of maximum deviation of any trajectory from the path marked by a star. We compare
against an open-loop controller, which only tracks the path and does not use any slider feedback.
Five open-loop trajectories are shown for each slider (in red). The open-loop trajectories end once
contact between the EE and slider is lost. All open-loop trajectories fail within about 2m, whereas
our controller is able to push the objects across the full length of the room.

performance. In general, the gains can be tuned to give better tracking performance when the set of
possible slider parameters is smaller. We increased fmin to reject noise in the real-world FT sensor.

The results for a straight-line desired path are shown in Figure 3.11. Ten trajectories using our
pushing control law are shown for each slider. Here we compare against an open-loop controller,
which just follows the path using the open-loop angle (3.3) and constant speed v. Five open-loop
trajectories are shown for each slider. Open-loop pushing with single-point contact is not robust to
changing friction, misalignment with the slider’s CoM, or other disturbances, and indeed we see
that the open-loop trajectories all fail within 2m of the start of the path, demonstrating the need
for a closed-loop controller. In contrast, our controller successfully pushes the sliders across the
full 6m length of the room.

The trajectories do not converge perfectly to the desired path, at least not within the available 6m
distance. This is expected in the real world, as the slider is constantly perturbed by imperfections
on the surface of the ground as it slides, which must then be corrected by the controller. Indeed,
as can be seen in Figure 3.10, the floor of the room has various pieces of tape and other markings
which change the surface friction properties as the object slides. For Box1, we actually expect
the slider to end up slightly above the path, since its CoM is offset from the measured position.
Indeed, our controller only ensures some point on the slider (i.e., the contact point) tracks the path,
which depends on the slider’s frictional and inertial parameters. Regardless, in Figure 3.11 we see
that the controller keeps the slider within approximately 0.5m of the path at all times, even with
different pressure distributions and considerable initial lateral offsets between pusher and slider,

CHAPTER 3. ROBOTIC PUSHING WITH FORCE FEEDBACK 36

0

2

4

Barrel

0 2 4

0

2

4

Box1

0 2 4
x [m]

Box2

0 2 4

y
[m

]

1Figure 3.12: Position trajectories (in blue) for real sliders pushed along a curved path, using our
pushing controller. In the top row, each slider is pushed through freespace; in the bottom row,
an obstacle acting as a wall is introduced (in red), which blocks the motion of the sliders. Ten
trajectories are shown for each scenario, with the point of maximum deviation from the path
marked by a star. Despite hitting the wall, the controller adjusts the pushing velocity to continue
pushing the sliders in the desired direction.

and converges to an even narrower range.
The results for tracking a curved path are shown in Figure 3.12. We show results for freespace as

well as with the addition of a wall, which blocks slider motion (see Figure 3.10). The controller knows
the location of the wall, so the robot itself can avoid colliding with it. However, the slider does hit
the wall, after which the controller adjusts the pushing velocity to continue in the desired direction.
This setup represents a simplified version of navigating a turn in a hallway, and demonstrates
that we can, in principle, handle contact with obstacles. In this work we assume the space is open
enough that the robot can always maneuver to obtain the desired EE velocity using (3.6); future
work will investigate narrower hallways and cluttered environments.

Finally, we compare our force-based controller to a vision-based controller (i.e., one that uses
measurements of the slider’s position, which we obtain using motion capture). We use the “dipole”
approach from [47], which generates pushing directions based on the measured angle between
the desired goal position and the EE position with respect to the slider. The goal position is the
point 1m ahead of the current closest point on the desired path. Figure 3.13 presents metrics

CHAPTER 3. ROBOTIC PUSHING WITH FORCE FEEDBACK 37

0.8

0.9

1.0
N
or
m
al
iz
ed

di
st
an
ce

Straight

0.64

Curved: Free

0.59

Curved: Walls

Force Dipole
0.0

0.3

0.6

M
ax
im

um
de
vi
at
io
n
[m

]

1.70

Force Dipole

1.82

Force Dipole

1.43

Barrel Box1 Box2

1Figure 3.13: Boxplots of metrics for our proposed approach (“Force”; 10 trajectories per boxplot)
and the vision-based baseline from [47] (“Dipole”; 5 trajectories per boxplot). The middle yellow
line is the median, the box represents the first and third quartiles, and the whiskers represent the
minimum and maximum values. The numbered arrows indicate the medians of values outside the
axis limits. The normalized distance is the distance actually travelled along the path divided by the
distance that would have been travelled if the path were perfectly tracked; the maximum deviation
is the farthest point of the slider from the desired path. The normalized distance can exceed 1 if
velocity tracking is imperfect or if some of the path is skipped, but the latter necessarily results in
some path deviation. Notice that while the dipole approach is effective when the slider’s position is
well-aligned with its CoM, it deviates substantially if not (e.g., with Box1).

comparing the controllers. The maximum deviation metric is simply the farthest distance between
the slider and the desired path, which gives a measure of worst-case path-tracking error. The
normalized distance metric is calculated as follows. Let t0 be the time of first contact, let tf be the
final time, and let pd0 and pdf be the closest points on the path to the slider’s position at t0 and tf ,
respectively. Then we define the ideal distance travelled as d̄ = v(tf − t0) and the actual distance
travelled d as the distance along the path between pd0 and pdf . The normalized distance d/d̄ is a
measure of how well the task was completed relative to an “ideal” controller that tracked the path
perfectly. For simplicity, we neglect the short acceleration phase at the start of each trajectory.

Looking at Figure 3.13, let us first examine our proposed force-based approach. We see that the
normalized distance is higher and the maximum deviation is lower for the straight path compared
to the curved one—the curved path is in some sense more difficult. The metrics between each of the
sliders are fairly similar for a given desired path. The addition of the wall also does not substantially
alter the metrics for the curved path, though the normalized distance for Box2 is slightly lowered.
The wall briefly slows down the slider after collision, but this removes the overshoot from the
path that occurs when the wall is not present (see Figure 3.14 for an example of the change in

CHAPTER 3. ROBOTIC PUSHING WITH FORCE FEEDBACK 38

0.0

0.1

Ve
lo
ci
ty

[m
/s
]

0 20 40 60

Time [s]

0

40

80

Fo
rc
e
[N

] Wall
collision

30 40 50

Time [s]

0

100

200

Fo
rc
e
[N

] Wall
collision

Free
Walls
Admittance
No admittance

1Figure 3.14: Left: Slider velocity and contact force magnitudes from two runs of the Box2 slider
along the curved path, with and without the wall obstacle. The force increases and the velocity
decreases upon collision with the wall, until the controller adjusts the pushing velocity to continue
along the path. Right: Contact force magnitudes from two different runs of the Box2 slider along
the curved path with walls, with and without the admittance controller. Without the admittance
controller, the maximum force is well in excess of 150N, and the experiment was stopped to avoid
damage. The other run has the highest maximum force of any runs that used the admittance
controller, which is much lower than 150N.

contact force and slider velocity that occurs when colliding with the wall). Second, consider the
dipole approach. We expect a vision-based approach to generally outperform one using only the
contact force, since the measured force is noisy and only provides local information at the contact
point. Indeed, the dipole approach is effective when the measured position is closely aligned
with the slider’s CoM, but results in large errors when it is not (e.g., with Box1). This would
require extra online adaptation to resolve, something which our force-based controller provides
automatically. Ultimately, one must decide which approach (or a combination) makes sense given
the available sensing infrastructure—but now force-based pushing is a possible option. Overall, our
force-based controller is able to efficiently navigate the path while keeping the deviation reasonable,
and we encourage readers to gain more insight into the controller’s behaviour by watching the
supplemental video.

3.8 Conclusion

We presented the first controller for quasistatic robotic planar pushing with single-point contact
using only force feedback to sense the slider. The controller does not require known slider pa-
rameters or slider pose feedback. We demonstrated its robustness in simulated and real-world
experiments, including collisions with a static wall obstacle, which show that our controller reliably
converges to the desired path with reasonable deviation errors. Future work includes a formal

CHAPTER 3. ROBOTIC PUSHING WITH FORCE FEEDBACK 39

proof of stability, more sophisticated force-based controllers that can improve performance over
time through interaction with the slider, and investigation of hybrid approaches that combine force
and vision.

Chapter 4

Model Predictive Control for
Nonprehensile Object Transportation

In this chapter we develop a solution for another nonprehensile manipulation task—known as the
waiter’s problem—using a mobile manipulator with model predictive control. It is based on the
following publication:

A. Heins and A. P. Schoellig, “Keep it Upright: Model Predictive Control for Nonpre-
hensile Object Transportation with Obstacle Avoidance on a Mobile Manipulator,” IEEE
Robotics and Automation Letters, vol. 8, iss. 12, pp. 7986–7993, 2023.

This is the first whole-body MPC for a mobile manipulator solving the waiter’s problem, and the
first approach to the waiter’s problem that handles dynamic obstacles. Beyond the results presented
in the above publication, we also include some further experiments comparing against an additional
baseline method in Section 4.8.3.

4.1 Introduction

We consider the nonprehensile object transportation task known as the waiter’s problem [66], which
requires the robot to transport objects from one location to another while keeping them balanced
on a tray at the end effector (EE), like a restaurant waiter (see Figure 4.1). In contrast to existing
approaches, our focus is on fast online planning in response to new and changing environments.
Our main contribution is a whole-body constrained model predictive controller (MPC) for a mobile
manipulator that transports objects on a tray to a desired location while avoiding collisions with
static and dynamic obstacles, the trajectories of which may not be known a priori.

Specifically, we address the waiter’s problem using a velocity-controlled mobile manipulator.
Mobile manipulators are capable of performing a wide variety of tasks due to the combination of
the large workspace of a mobile base and the manipulation capabilities of robotic arms. We are
particularly interested in having the mobile manipulator move and react quickly, whether to avoid

40

CHAPTER 4. MODEL PREDICTIVE CONTROL FOR NONPREHENSILE OBJECT TRANSPORTATION 41

Figure 4.1: Our mobile manipulator balancing a pink bottle while avoiding a thrown volleyball
(ball circled in red with approximate trajectory in white; approximate end effector trajectory in
blue). The controller has less than 0.75 s between first observing the ball and a potential collision.
A video of our experiments is available at http://tiny.cc/keep-it-upright.

obstacles or simply for efficiency. However, a challenge of mobile manipulation is that moving
across the ground causes vibration at the EE, which requires our object transportation strategy to
be robust to such disturbances.

Objects are held on a tray at the EE under frictional contact (i.e., without the use of grasping
or adhesive), and they should neither fall over nor slip off the tray. We assume that the geometry,
inertial properties, and initial poses of the objects are known, but we do not assume that feedback
of the objects’ poses is available online. We assume the robot is velocity-controlled and a kinematic
model is available; its dynamic model is not required. Furthermore, we propose planning using the
minimum statically feasible friction coefficients, which provides robustness to frictional uncertainty
and other force disturbances while also substantially reducing the compute time required to update
the MPC policy.

In summary, this work makes the following contributions:

1. Control: We propose the first whole-body model predictive controller (MPC) for a mobile
manipulator solving the waiter’s problem. Compared to existing MPC-based approaches to
this problem, which have only been demonstrated on fixed-base arms, our controller optimizes
the joint-space trajectory online directly from task-space objectives and constraints, without
the use of a higher-level planning step. Furthermore, the controller uses the minimum
statically feasible friction coefficients, which provides robustness to frictional uncertainty,

http://tiny.cc/keep-it-upright

CHAPTER 4. MODEL PREDICTIVE CONTROL FOR NONPREHENSILE OBJECT TRANSPORTATION 42

vibration, and other real-world disturbances. When the minimum statically feasible friction
coefficients are zero, we show that the MPC problem can be solved more efficiently.

2. Experiments: We present the first demonstrations of the waiter’s problem with a real
velocity-controlled mobile manipulator transporting up to seven objects; transporting an as-
sembly of stacked objects; and avoiding static and dynamic obstacles, including a thrown vol-
leyball (see Figure 4.1). The EE achieves speeds and accelerations up to 2.0m/s and 7.9m/s2,
respectively.

3. Code: Our code is available as an open-source library at https://github.com/utiasDSL/upright.

After discussing related work in Section 4.2 and background information in Section 4.3 and 4.4,
we present our robust sticking constraints (so-called because they ensure the objects remain
stationary with respect to the tray; that is, they “stick” to it) in Section 4.5 and our controller
in Section 4.6. Simulations and hardware experiments follow in Section 4.7 and 4.8, and Section 4.9
concludes the chapter.

4.2 Related Work

Prior examples of robots directly inspired by waiters in a restaurant include [67]–[69], but these
are mobile robots without manipulator arms. In contrast, a mobile manipulator has additional
DOFs that provide redundancy and a larger workspace, at the cost of requiring a larger and more
computationally demanding control problem.

One approach for transporting objects is to use some manner of sensor feedback to infer
the object states. In [70], a manipulator performs the classic inverted pendulum task. In [71],
a controller is developed to stabilize a tray based on data from an attached accelerometer and
gyroscope. In [72], an object is balanced on a tray by a humanoid robot based on force-torque
measurements from the robot’s wrists. While the focus of [72] is correcting for an object’s loss
of balance, we focus on generating fast motions that maintain open-loop balance without object
feedback.

A two-dimensional version of the waiter’s problem is addressed in [73], in which a parallel
manipulator is mounted on a mobile robot to compensate for the sensed acceleration of the system.
The manipulator is controlled to act like a pendulum to minimize the tangential forces acting on a
transported object. Simulation of pendular motion has also been used for the slosh-free transport of
liquids [74], [75], though these works focus on imposing particular dynamics on the EE rather than
directly constraining its motion. EE acceleration constraints are imposed in [76] to avoid dropping
grasped objects or spilling liquids, but nonprehensile object transportation is not addressed.

The waiter’s problem has also been addressed using offline motion planning. Time-optimal
path planning (TOPP) approaches minimize the time required to traverse a provided path subject to
the constraint that the transported objects remain balanced. In [77], convex programming is used
to solve the TOPP problem. In [78], a robust time-scaling approach is used to handle confidence

https://github.com/utiasDSL/upright

CHAPTER 4. MODEL PREDICTIVE CONTROL FOR NONPREHENSILE OBJECT TRANSPORTATION 43

bounds on model parameters like friction, which is combined with iterative learning to learn the
bounds. Other planning-based approaches do not assume a path is provided. A kinodynamic
RRT-based planner is applied to the nonprehensile transportation task in [79], which demonstrates
solving a task where no quasistatic solution exists. An optimization-based planner is applied to
the task in [66]. In contrast to these offline planning approaches, our method runs online to react
quickly to changes in the environment.

In [80] and [81], a reactive controller automatically regulates the commanded motion to ensure
the object remains balanced. A similar approach is applied to legged robots in [82], where the
desired trajectory is generated by a spline-based planner. This is one of the only works to use a
full mobile manipulator (a quadruped) for the waiter’s problem, but it is demonstrated only in
simulation and does not consider dynamic obstacles. To our knowledge, the only physical mobile
manipulator experiments for the waiter’s problem have been performed on a humanoid in [83], but
similar to [72] they focus on the detection and rejection of disturbances to the object’s stability
rather than fast object transportation.

Finally, like us, some recent works use MPC to address the waiter’s problem, but only on
fixed-based arms. In [28], a dual-arm approach is proposed in which a time-optimal trajectory is
planned and MPC is used to compute the applied wrench required to realize the object’s trajectory.
Another MPC approach is described in [84], which is designed to track a manipulator’s joint-space
reference trajectory. In contrast, our MPC approach optimizes the joint-space trajectory online
while considering task-space objectives and constraints, which allows us to respond quickly to
changes in the environment like dynamic obstacles. We also show how reducing the friction
coefficients in the controller constraints can provide robustness and computational savings.

4.3 System Model

In this section we present the models of the robot and balanced objects.

4.3.1 Robot Model

We consider a velocity-controlled mobile manipulator with state x = [qT ,νT , ν̇T]T , where q is
the generalized position, which includes the planar pose of the mobile base and the arm’s joint
angles, and ν is the generalized velocity. We include acceleration in the state and take the input u
to be jerk, which ensures a continuous acceleration profile [84]. The input is double-integrated to
obtain the velocity commands sent to the actual robot. We require only a kinematic model, which
we represent generically as

ẋ = a(x) +B(x)u,

with a(x) ∈ Rdim(x) and B(x) ∈ Rdim(x)×dim(u). The actual kinematic model for our robot is

ẋ = Ax+Bu, (4.1)

CHAPTER 4. MODEL PREDICTIVE CONTROL FOR NONPREHENSILE OBJECT TRANSPORTATION 44

where

A =

09 19 09

09 09 19

09 09 09

 , B =

0909
19

 ,

with 0n denoting a n× n matrix of zeros. The fact that our mobile base is omnidirectional gives
us a linear model, but the nonlinear equations of motion arising from a nonholonomic base, for
example, can also be handled.

4.3.2 Object Model

We model each object O as a rigid body subject to the Newton-Euler equations (2.1) expressed in
the EE frame. Recall that the GIW acting on the object is

wo
GI ≜ Ξoη − ad(ξ)TΞoξ, (4.2)

where Ξo is the object’s spatial mass matrix expressed with respect to the EE frame, which we
assume is known, η is the difference between the EE’s spatial acceleration and gravity, and ξ is the
EE’s spatial velocity.

4.4 Sticking Constraints

To control the interaction between the EE and transported objects in the most general case, we
would need to reason about the hybrid dynamics resulting from different contact modes (sticking,
sliding, no contact, etc.), as discussed in Chapter 2. Instead, our approach is to enforce constraints
that keep the system in a single mode: sticking. That is, we constrain the robot’s motion so that the
transported objects do not move with respect to the EE, which is known as a dynamic grasp [11].
Let us define the EE state as the tuple

ε = (Ce, re, ξ, ξ̇),

where Ce ∈ SO(3) is the EE’s orientation and re ∈ R3 is its position in the global frame. We can
compute ε from the robot state x via forward kinematics (2.8), in which case we may explicitly
write ε(x). When in the sticking mode, the the object’s motion is completely determined by ε; the
remainder of this section describes the constraints required to maintain the sticking mode. We do
not use online feedback of the object state—given the initial object poses with respect to the EE,
the controller generates trajectories to keep those poses constant in an open-loop manner.

A general approach for ensuring an object sticks to the EE can be obtained by including all con-
tact forces directly into the optimal control problem and constraining the solution to be consistent
with the desired (sticking) dynamics, which has been previously applied to the waiter’s problem in,
e.g., [80] and [84]. Consider an arrangement of objects with N total contact points {Ci}i∈I and

CHAPTER 4. MODEL PREDICTIVE CONTROL FOR NONPREHENSILE OBJECT TRANSPORTATION 45

corresponding contact forces {fi}i∈I , where I = {1, . . . , N} (see Figure 4.2). By Coulomb’s law,
each fi must be inside its friction cone, for which we use the inner pyramidal approximation (2.11).
The total contact wrench acting on an individual object O is

wo
C =

∑
j∈J

[
rj × fj

fj

]
, (4.3)

where J ⊆ I is the subset of contact indices for O and rj is the position of Cj . The object
remains stationary with respect to the tray for a given e if a set of contact forces can be found each
satisfying the fricton cone constraint (2.11) and consistent with the Newton-Euler equations (2.1),
(4.2), and (4.3). We assume that contact patches can be represented as polygons with a contact
point at each vertex; as in [80] we always use four points with equal friction coefficients.

However, we need an extra constraint for each contact point shared between two objects (as
opposed to contact points between an object and the tray; again refer to Figure 4.2): per Newton’s
third law, the contact force acting on each object must be equal and opposite. Let A and B be two
objects in contact at some point Ci, and denote fa

i and f b
i the corresponding contact forces acting

on A and B, respectively. Then we have the constraint

fa
i = −f b

i . (4.4)

To lighten the notation going forward, we gather all contact forces into the vector ζ = [fT
1 , . . . ,f

T
N]T ,

and write
(ε, ζ) ∈ S (4.5)

to indicate that the EE state ε and contact forces ζ together satisfy the sticking constraints (2.11),
(2.1), (4.2), (4.3), and (4.4) for all objects.

4.5 Robust Sticking Constraints

The friction cone constraints (2.11) ensure all contact forces are inside their respective friction cones.
However, this assumes accurate knowledge of the friction coefficients, and the constraints may
also be violated by unmodelled force disturbances like vibrations and air resistance. To improve
the controller’s robustness, it is thus desirable for the tangential contact forces to be small, keeping
the forces away from the friction cone boundaries [80]. We propose to plan trajectories using the
minimum statically feasible values of the friction coefficients; that is, the smallest coefficients for
which there exists an EE orientation Ce and contact forces ζ satisfying the sticking constraints
with zero EE velocity and acceleration. This ensures that the controller can always converge to a
stationary position. Again considering an arbitrary arrangement of objects, we obtain the minimum

CHAPTER 4. MODEL PREDICTIVE CONTROL FOR NONPREHENSILE OBJECT TRANSPORTATION 46

C5

C1

C2

C3

C4

C6

C7

C8

C9

Figure 4.2: A bottle (red) and globe (blue) balanced on a tray. This arrangement has a total of N = 9
contact points (black dots), with each object having n = 5 (C5 is shared). Contact forces (arrows)
at each contact point must belong to their friction cones (one shown in green). The circular contact
patch of the bottle is approximated by a quadrilateral. The contact force acting on each object at
the shared contact point C5 must be equal and opposite. If µi = 0, the friction cone at Ci collapses
to the line along the normal n̂i.

φ

g

Figure 4.3: Planar view of two arrangements of objects, each with two objects balanced on a tray
and a total of four contact points (black dots). Left: the support planes (dashed lines) of each object
are parallel, so the orientation shown is feasible in the presence of gravity with no friction forces
(i.e., we can take µi = 0 for all i ∈ I). Right: the support planes are not parallel, so some friction is
always required to balance this arrangement.

statically feasible friction coefficients by solving the optimization problem

argmin
ϕ,ζ,{µi}i∈I

1

2

∑
i∈I

αiµ
2
i (4.6a)

subject to µi ≥ 0, i ∈ I (4.6b)

Fifi ≤ 0, i ∈ I (4.6c)

wo
C = −Ξo

[
Ce(ϕ)g

0

]
, ∀O, (4.6d)

where {αi}i∈I are a set of weights and {µi}i∈I are the friction coefficients of the contact points.
The constraint (4.6c) is the linearized friction cone from (2.12) and (4.6d) are the Newton-Euler
equations for each object when ξ = ξ̇ = 0, with Ce(ϕ) parameterized by the roll-pitch-yaw Euler

CHAPTER 4. MODEL PREDICTIVE CONTROL FOR NONPREHENSILE OBJECT TRANSPORTATION 47

angles ϕ and g = [0, 0,−9.81]T the gravitational acceleration in the global frame.
If we have nominal estimates of the friction coefficients {µ̄i}i∈I , we set each weight αi = 1/µ̄i

to lower each coefficient proportionally; otherwise we set αi = 1 for all i ∈ I . In the common
case when the support planes of each object are parallel to each other (see Figure 4.3), the solution
to (4.6) is simply µi = 0 for all i ∈ I with Ce such that the support planes are orthogonal to gravity.
An example when the solution of (4.6) is not µi = 0 for all i ∈ I is discussed in Section 4.7.2.
The problem (4.6) need only be solved once for a given arrangement of objects. It is always non-
convex due to the product of decision variables µi and fi in the friction cone constraint and the
nonlinear mapping Ce(ϕ), but we did not have a problem solving it with the SLSQP solver [85]
from scipy [86].

While choosing the minimum friction coefficients may at first appear overly conservative,
this approach has a number of benefits. First, it removes the need for accurate friction coefficient
estimates, which requires time-consuming physical manipulation of the objects to estimate. Second,
as we mentioned in Chapter 1, mobile manipulation can produce significant EE vibration, requiring
robust motions to ensure objects do not move with respect to the tray. Third, in the common
case when µi = 0 for all i ∈ I , the optimal control problem can be simplified as follows. In
general we require one contact force variable fi ∈ R3 per contact point, each constrained to
satisfy (2.11). However, when µi = 0, we can parameterize the force with a single scalar fi ≥ 0

such that fi = fin̂i. This reduces the number of force decision variables by two thirds and
replaces (2.11) with a simple bound, making the optimization problem faster to solve. However, as
we discuss in more detail below, this choice may make the optimization problem infeasible. Our
solution is to soften the constraints using slack variables, which ensures feasibility while retaining
improved computation speed and motion robustness.

We solved (4.6) assuming the EE was stationary, since we do not assume to know the full
EE trajectories a priori. However, in general it is not possible to accelerate multiple objects
while assuming zero friction, even when there is a feasible stationary solution. To see this, first
consider a single object on a tray with its support plane orthogonal to gravity and with µi = 0

for all i ∈ I . From (2.14) we have fCxy = 0 and τCz = 0, where the subscript (·)xy denotes
the tangential component and (·)z denotes the normal component. Define the selector matrix S

such that Sw = [τz, fx, fy]
T for a given wrench w = [τT ,fT]T . Substituting (4.2) into (2.1)

with SwC = 0 gives us
S(Ξoη − ad(ξ)TΞoξ) = 0.

So far this is fine: we can plan trajectories that always satisfy this equation. However, if we have
two objects A and B with mass matrices Ξa and Ξb, respectively (e.g., the left arrangement in
Figure 4.3), then the EE trajectory needs to satisfy both

S(Ξaη − ad(ξ)TΞaξ) = 0, (4.7)

S(Ξbη − ad(ξ)TΞbξ) = 0, (4.8)

CHAPTER 4. MODEL PREDICTIVE CONTROL FOR NONPREHENSILE OBJECT TRANSPORTATION 48

at all times, where the only difference between (4.7) and (4.8) is the mass matrix. In general,
we cannot find an EE trajectory with non-zero accelerations that always satisfies both equations.
However, if there is some friction force, the right-hand sides of (4.7) and (4.8) are no longer restricted
to be identically zero and also need not be equal to each other. Thus we choose to soften the object
dynamics constraints (see the next section), which allows tangential contact force to be used when
needed, but with a penalty. This approach still requires tuning: instead of tuning friction coefficients,
we now must tune the penalty weights. The benefit is that we obtain computational savings when
each force can be represented by a non-negative scalar.

4.6 Constrained Model Predictive Controller

We now formulate a model predictive controller to solve the waiter’s problem. The controller
optimizes trajectories x(τ), u(τ), and ζ(τ) over a time horizon τ ∈ [t, t+T] by solving a nonlinear
optimization problem at each control timestep t. Suppressing the time dependencies, the problem is

argmin
x,u,ζ

1

2

∫ t+T

τ=t
L(x,u, ζ) dτ

subject to ẋ = a(x) +B(x)u (system model)

(ε(x), ζ) ∈ S (sticking)

0 ≤ d(x) (collision)

¯
x ≤ x ≤ x̄ (state limits)

¯
u ≤ u ≤ ū (input limits)

(4.9)

where the stage cost is

L(x,u, ζ) = ∥∆r(x)∥2Wr
+ ∥x∥2Wx

+ ∥u∥2Wu
+ ∥ζ∥2Wf

,

with ∥ · ∥2W = (·)TW (·) for weight matrix W . The EE position error is ∆r(x) = rd − re(x). We
focus on the case where the desired position rd is constant, to assess the ability of our controller to
rapidly move to a new position without a priori trajectory information. The matrices Wr and Wx

are positive semidefinite; Wu and Wf are positive definite. Notice that we do not include a desired
orientation: we allow the sticking constraints to handle orientation as needed. If µi = 0, then only
a scalar fi is included as a decision variable for each contact force (contained in ζ) and (2.11) is
replaced by the constraint fi ≥ 0. The vector d(x) contains the distances between all pairs of
collision spheres representing obstacles and the robot body, which must be non-negative to avoid
collisions. When dynamic obstacles are used, then we also augment the state x to predict their
motion (see Section 4.8.2). We assume that the system can always reach a feasible state that achieves
the desired EE position. We discretize the prediction horizon of (4.9) with a fixed timestep ∆t

and solve it online using SQP (see Chapter 2) via the open-source framework OCS2 [87] and the
QP solver HPIPM [39], with the Jacobians required to linearize (4.9) computed using automatic

CHAPTER 4. MODEL PREDICTIVE CONTROL FOR NONPREHENSILE OBJECT TRANSPORTATION 49

differentiation via CppAD [88]. We assume that T can be chosen sufficiently long to obtain stability.
We use the Gauss-Newton approximation for the Hessian of the cost and we soften the constraints
with L2 penalties [39]. The optimal state trajectory produced by (4.9) is tracked by a low-level
joint controller at the robot’s control frequency. The remainder of this section provides additional
implementation details.

4.6.1 Soft Constraints

We soften all of the constraints in (4.9) except for the system model constraints ẋ = a(x)+B(x)u.
Consider a general inequality constraint g(x,u) ≤ 0 (equality constraints are just treated as
two-sided inequalities with equal lower and upper limits). We soften the constraint by introducing
a slack variable s ≥ 0 as another decision variable in the optimization problem and relaxing the
inequality constraint to g(x,u) ≤ s. The optimizer is encouraged to make s small (and thus reduce
constraint violation) by adding a term penalizing s to the objective function. In this work we use
an L2 penalty of the form wss

2 for each slack variable, where ws > 0 is a tunable weight. We
use ws = 100 for all slacks except for the projectile avoidance constraint, which uses ws = 4/d2,
where d = 0.35m is the specified minimum distance between the end effector and the predicted
projectile trajectory. We found that the relative weight between the slack penalties for the sticking
constraints and the projectile avoidance constraints was the most difficult part of the controller to
tune, hence the different slack weight for the projectile avoidance constraint.

When the constraints are soft, the relative magnitudes of the constraint violations must also be
considered (which are weighed against each other in the problem’s objective function). In particular,
we adjust the Newton-Euler dynamics constraints (2.1) for each object to

m−1
(
wC +wGI/

√
N
)
= 0.

Dividing by the object’s mass m ensures that transporting heavier objects is not prioritized over
lighter objects. Dividing the gravito-inertial wrench by

√
N reduces the magnitude of the contact

force variables in the optimization problem as the number of contact points N increases. The idea
is that we do not want the penalties on (2.1) to dominate the other objectives and penalties in the
problem (4.9) just because more objects and contact points have been added to the problem.

4.6.2 Low-level Joint Controller

The MPC problem (4.9) typically cannot be solved at the same frequency that the robot accepts
commands, so we need a strategy to compute inputs between solutions of (4.9). Suppose we
compute a new MPC policy using (4.9) at time t, which is valid until time t + T . Then at each
control time τ ∈ [t, t + T], we can compute the jerk input u(τ) using an affine state feedback
controller of the form

u(τ) = K(τ)(x⋆(τ)− x(τ)) + k(τ), (4.10)

CHAPTER 4. MODEL PREDICTIVE CONTROL FOR NONPREHENSILE OBJECT TRANSPORTATION 50

where x⋆ is the optimal state trajectory, K is the feedback gain matrix, and k is the feedforward
input, all obtained from the most recent policy. In particular, at each control timestep t, (4.9) is
discretized and linearized to form a quadratic program (QP), which is solved using an IP method [39].
The terms K and k are obtained from the Riccati recursion used to solve the linear system arising
from the Karush-Kuhn-Tucker conditions in the final iteration of the IP method used to solve the
QP (see [39] as well as [89] and [90] for more details). The upshot of (4.10) is that we can cheaply
generate inputs u based on the most recent MPC solution, unless more time than the horizon T

has elapsed since the solution, which never occurred during our experiments.
In simulation we do not run in real time, which allows us to recompute the policy every 10ms

of simulation time, regardless of the actual required compute time. We use (4.10) to generate the
input at every step of the simulation, which has a timestep of 1ms. In our hardware experiments,
the MPC policy (4.9) is solved in a separate process. We limit policy updates to at most once
every 10ms and we use (4.10) to generate commands at the robot’s control frequency of 125Hz.

4.6.3 State Estimation

A Kalman filter is used to estimate the state of the robot x in our hardware experiments. The model
is linear, allowing us to use the standard linear Kalman filter (see e.g. [91]). Measurements of the
pose of the mobile base are provided by a Vicon motion capture system and measurements of the
joint angles of the arm are provided by its joint encoders. The position of the projectile is also
obtained from the Vicon system. Discretizing (4.1) gives us the discrete-time model

x+ = Āx+ B̄u,

where

Ā =

I9 δt19 (1/2)δt219

09 19 δt19

09 09 19

 , B̄ =

(1/6)δt
319

(1/2)δt219

δt19

 ,

are obtained from Taylor series expansions of x and we have used (̄·) to denote the discrete-time
system matrices. The sampling time is δt = 8ms, which is the duration of each iteration of the
robot control loop. We measure generalized positions q, and so our measurement model is q = C̄x,
where

C̄ =
[
19 09 09

]
.

The other ingredients we need for the Kalman filter are the process covariance Q̄, the measurement
covariance R̄, and the initial state covariance P0. In experiment we use Q̄ = B̄QB̄T with Q =

1019, R̄ = 0.00119, and P0 = 0.1127.

CHAPTER 4. MODEL PREDICTIVE CONTROL FOR NONPREHENSILE OBJECT TRANSPORTATION 51

δ

δ

h

`

`

`

Fixture

x

y

z

Figure 4.4: An arrangement consisting of a red box balanced on a tray along with a black fixture,
which is rigidly attached to the tray. The fixture adds contact points (shown in green) up the side
of the box, which our controller can exploit to accelerate faster.

4.7 Simulation Experiments

We begin with simulations to gain insight into the performance of our controller in an idealized
environment. We use a simulated version of our experimental platform, a 9-DOF mobile manipulator
consisting of a Ridgeback mobile base and UR10 arm, depicted in Figure 4.8. In all experiments
(simulated and real) we use ∆t = 0.1 s, T = 2 s, and weights

Wr = 13, Wx = diag(019, 0.119, 0.0119),

Wu = 0.00119, Wf = 0.0011dim(ζ).

The state and input constraints used for the robot are

q̄ =

[
10e3

2πe6

]
, ν̄ =

1.1e22e3

3e4

 , ˙̄ν =

2.5e21

10e6

 , ū =

[
20e3

80e6

]
,

where x̄ = [q̄T , ν̄T , ˙̄νT]T ,
¯
x = −x̄,

¯
u = −ū, and en denotes an n-dimensional vector of ones.

We use a single SQP iteration per control policy update.

4.7.1 Sticking Constraint Comparison

We first consider the example shown in Figure 4.4, consisting of a box balanced on a tray and
in contact with a fixture, which is rigidly attached to the tray. We perform experiments with
and without the fixture, which is a cube of side length ℓ = 5 cm. The box has mass m = 0.5 kg,
height h = 20 cm, and a square base with side length δ = 6 cm. The CoM is located at the centroid,
the mass distribution is uniform, and µi = 0.2 for all i ∈ I . The task is to move the EE to a
desired goal point rd = [−2, 1, 0]T (all desired positions are given in meters relative to the initial
EE position) without dropping the box. We compare the trajectories that result from imposing four

CHAPTER 4. MODEL PREDICTIVE CONTROL FOR NONPREHENSILE OBJECT TRANSPORTATION 52

0 1 2 3

Tangential force [N]

4.5

5.0

5.5
N
or
m
al
fo
rc
e
[N

]

Friction
cone

None
Upward
Full
Robust

−3 0 3

x [cm]

−3

0

3

y
[c
m
]

Support
area

1Figure 4.5: Left: Force applied to the simulated box during motion. Right: Corresponding ZMP
trajectories. With no constraints (None) or the Upward constraint, the force leaves the friction
cone and the ZMP leaves the support area (safety margins in dashed lines), so the box slides and
tips over (and is dropped). The Full constraints touch but do not pass the boundaries; the Robust
constraints stay far from the boundaries in both cases.

different sets of constraints:

• None: No constraints.

• Upward: A constraint to keep the tray oriented upward.

• Full: The full set of sticking constraints (ε, ζ) ∈ S with each µi set to 90% of the true value.1

• Robust: The full set of constraints (ε, ζ) ∈ S with {µi}i∈I computed using (4.6). Unless
otherwise stated, the solution is µi = 0 for all i ∈ I .

In ideal conditions, the Full and Robust constraints should both keep the objects stationary with
respect to the tray, but the Full constraints provide less of a safety margin. The Upward approach
would work if the motion were quasistatic (i.e., with negligible accelerations), but that would not
be fast or reactive.

In Figure 4.5, the force acting on the object and the zero-moment point (ZMP) are shown relative
to the friction cone and support area, respectively. The ZMP is the point about which horizontal
moments are zero; if it is outside of the support area, then the object tips. Unsurprisingly, the None
and Upward approaches significantly violate both the friction cone and ZMP constraints, resulting
in the box being dropped. The Full approach produces motion at the boundary of the constraints
but does not violate them, while the Robust approach stays away from the boundaries. In Figure 4.6,

1We only use 90% of the true (measured or simulated) value to provide some robustness to small constraint violations
arising from discretization errors and other numerical disturbances. We subtract a small margin from the support area
for the same reason. This is more important in the hardware experiments, where there are more sources of noise and
disturbances.

CHAPTER 4. MODEL PREDICTIVE CONTROL FOR NONPREHENSILE OBJECT TRANSPORTATION 53

0

1

2
D

ist
an

ce
to

go
al

[m
] None

Upward
Full

Full (�xture)
Robust
Robust (�xture)

0 1 2 3 4 5 6

Time [s]

0

20

Ti
lt

an
gl

e
[d

eg
]

1Figure 4.6: Top: Distance of EE to goal location. Bottom: Tilt angle with respect to the upward-
pointing (i.e. gravity-aligned) orientation. The Full and Robust constraints limit acceleration to
keep the box stationary with respect to the tray; the Robust approach also uses higher tilt angles.
The None and Upward approaches accelerate faster—and drop the box. When the fixture is added,
the Full and Robust constraints can exploit it to achieve convergence speeds more similar to the
None and Upward cases. Notice that, except for the Upward constraint, there is no need for the tilt
angle to be near zero.

we see that the robustness of the Robust approach comes at the cost of slower convergence and
higher tilt angles compared to the Full approach. When the fixture is added, the Full and Robust
approaches can both exploit it to converge nearly as fast as when no constraints are used at all.
Notice that the tilt angle for the None and Full approaches need not converge to zero: the None
approach does not consider the EE orientation at all, while the Full approach may converge to any
orientation that satisfies the sticking constraints.

4.7.2 Non-Parallel Support Planes

Next we show an example when the solution to (4.6) is not simply µi = 0 for all i ∈ I . The setup
consists of a wedge supporting a box at an incline of ϕ = 15◦, similar to the right side of Figure 4.3.
For simplicity we assume that µ is constant between each pair of objects, so we need only solve (4.6)
for the friction coefficient between the tray and wedge µtw and between the wedge and box µwb.
We obtain µtw = µwb = 0.132, which corresponds to a tilt angle of θ = arctan(0.132) ≈ 7.5◦

relative to the ground for each object, meaning the wedge and box can be oriented so as to split
the angle ϕ between them. Using µtw = µwb = 0.132 for the controller and µtw = µwb = 0.2 for
the simulator, we run the simulation with the same goal rd = [−2, 1, 0]T . The initial and final
configurations are shown in Figure 4.7. Note that we need not start in a configuration which the
controller thinks is feasible (since the constraints are soft), but the controller will steer toward one
over the course of the trajectory. If we were to dispense with (4.6) and simply try to enforce µi = 0

CHAPTER 4. MODEL PREDICTIVE CONTROL FOR NONPREHENSILE OBJECT TRANSPORTATION 54

Figure 4.7: Left: Initial position of wedge (green) and box (red) arrangement. Middle: Initial side
view. The box is tilted 15◦ relative to the ground due to the slope of the wedge. Right: The position
at t = 6 s. The controller has oriented the tray so that both the wedge and box are tilted 7.5◦

relative to the ground, such that each requires as small a µ as possible.

Table 4.1: Approximate parameters for transported objects shown in Figure 4.8. CoM and inertia
are estimated from mass and geometry.

Arrangement # of
objects

of
contacts

Mass per
object [g]

Friction
coefficients

Bottle 1 4 827 tray-bottle: 0.26

Arch 3 16 180 tray-block: 0.30
block-block: 0.42

Cups 7 28 200 tray-cup: 0.28

for all i ∈ I , the controller fails to converge because no feasible stationary solution exists.

4.8 Hardware Experiments

In simulation we gained insight into the behaviour of the controller without the influence of real-
world effects like sensor noise or EE vibrations. We now perform experiments on our real mobile
manipulator to assess our approach in more realistic scenarios. Position feedback is provided for
the arm by joint encoders and for the base by a Vicon motion capture system, which is used in
a Kalman filter to estimate the full robot state as described in Section 4.6.3. We also use motion
capture to track the position of the transported objects, which is only used for error reporting.
The controller parameters and weights are the same as in the previous section. The robot and
transported objects are shown in Figure 4.8; the corresponding object parameters are given in
Table 4.1. A video of the experiments can be found at http://tiny.cc/keep-it-upright.

4.8.1 Static Environments

We perform a large set of experiments with different combinations of objects and desired EE
positions, each using the None, Upward, Full, and Robust constraint methods described above.
The desired positions are rd1 = [−2, 1, 0]T , rd2 = [2, 0,−0.25]T , and rd3 = [0, 2, 0.25]T . The
object error and controller compute time in an obstacle-free environment are shown in Figure 4.9;
results for an environment with static obstacles are shown in Figure 4.10. We model obstacles as

http://tiny.cc/keep-it-upright

CHAPTER 4. MODEL PREDICTIVE CONTROL FOR NONPREHENSILE OBJECT TRANSPORTATION 55

Figure 4.8: Top left: Real experimental setup. Robot is shown holding the Bottle object. Obstacle
locations marked with pylons. Top right: Corresponding simulated experimental setup with collision
spheres on the robot in red and on the obstacles in blue. Bottom row: Bottle, Arch, and Cups object
arrangements used for experiments. The arch is an example of non-coplanar contact (the three
blocks composing the arch are not attached together). The bottle is filled with sugar and the cups
each contain bean bags instead of liquid to avoid spills in the lab.

collections of spheres; spheres also surround parts of the robot body for collision checking (see
top right of Figure 4.8). As expected, the None and Upward approaches almost always fail—the
notable exception is for goal rd2 , which requires more base motion and is thus slower than the
other trajectories. The Robust constraints typically produce the lowest object error or are close to
it. In general we expect the Robust constraints to have the lowest error, given that they reduce the
tangential contact forces and can thus resist unmodelled force disturbances. However, we noticed
that the larger tilt angles required by the Robust constraints can occasionally result in some sliding
of the objects.

Computationally the Robust constraints scale much better with the number of contacts than
the Full constraints, since they require less decision variables and use simpler constraints. The Full
constraints also require reasonably accurate friction coefficient estimates; the effectiveness of the
Robust constraints show that we need not fear frictional uncertainty and (when statically feasible)
can set µi = 0 for all i ∈ I to reduce compute time. The static obstacle results in Figure 4.10 are
similar to those for free space except for a modest increase in compute time. Sample trajectories
are shown in Figure 4.11.

CHAPTER 4. MODEL PREDICTIVE CONTROL FOR NONPREHENSILE OBJECT TRANSPORTATION 56

0

20

40
O
bj
ec
t

er
ro
r[
m
m
]

rd1
rd2

rd3

Bottle Arch Cups0

50

100

Co
m
pu

te
tim

e
[m

s]

Bottle Arch Cups Bottle Arch Cups

None Upward Full Robust

1Figure 4.9: Object error (top row) and policy compute time (bottom row) for different combinations
of objects, goal positions, and constraints in free space. The object error is the maximum distance
the object moves from its initial position relative to the tray. In arrangements with multiple objects,
only a single one is tracked. The bar shows the average of three runs; the error bars show the
minimum and maximum values. One or more objects were completely dropped in all cases where
the minimum error is beyond the axis limits. The compute time is the average time required to
compute an updated MPC policy (i.e., one iteration of (4.9)). The bar shows the average across the
three runs (up to the first 6 s of the trajectory); the dot shows the average maximum value across
the three runs.

4.8.2 Dynamic Environments

We now consider environments that change over time due to dynamic obstacles. Dynamic obstacles
are modelled as spheres with known radii, but the controller does not know their trajectories a
priori.

An Unexpected Obstacle

Here we test the controller’s ability to react to unexpected events. We make the controller aware of
a new obstacle at varying times t, and the policy must be quickly updated to avoid a collision. The
setup is simple: we use the static obstacle environment and goal rd2 with the Bottle arrangement
and a new “virtual” obstacle (the obstacle does not physically exist, but the controller thinks it is
present). At time t the new obstacle instantly appears in front of the robot (represented by the
green sphere in Figure 4.8)—imagine a restaurant customer suddenly backing out their chair. The
results for different t are shown in Figure 4.12. The appearance of the obstacle causes significant
changes in the trajectory of both the EE and base, but the object is not dropped despite the sudden
change, even when the collision constraint is violated by the obstacle’s appearance. The maximum

CHAPTER 4. MODEL PREDICTIVE CONTROL FOR NONPREHENSILE OBJECT TRANSPORTATION 57

0

20

40
O
bj
ec
t

er
ro
r[
m
m
]

rd1
rd2

rd3

Bottle Arch Cups0

50

100

Co
m
pu

te
tim

e
[m

s]

Bottle Arch Cups Bottle Arch Cups

Full Robust

1Figure 4.10: The same results as shown in Figure 4.9 but in an environment with static obstacles
and only showing the Full and Robust approaches. Compared to Figure 4.9, the errors are similar
while the compute times are slightly higher.

object error and policy compute time were 18mm and 23ms, respectively, across three runs of
each of the four obstacle appearance times t. The trajectory with t = 1 s achieved the highest EE
velocity and acceleration of all our experiments, at 2.0m/s and 7.9m/s2, respectively.

Projectile Avoidance

Finally, we consider a ball with position rb and state b = [rTb , ṙ
T
b]

T modelled as a simple projectile
with r̈b = g. We neglect drag and other possible nonlinear terms, because avoiding an object
requires a less accurate model than when catching [92] or batting it [93]. The ball is thrown toward
the EE, and the robot must move to avoid the objects being hit while also keeping them balanced.
For these experiments we use the Bottle arrangement and the Robust constraint method. The
controller is provided with feedback of b once the ball exceeds the height of 1m; the state is
estimated using a Kalman filter with measurements of the ball’s position from the motion capture
system. The discrete-time equations of motion for the projectile are

b+ = Ābb+ B̄bg,

where

Āb =

[
13 δt13

03 13

]
, B̄b =

[
(1/2)δt213

δt13

]
,

CHAPTER 4. MODEL PREDICTIVE CONTROL FOR NONPREHENSILE OBJECT TRANSPORTATION 58

0

1

2
D
ist
an
ce

to
go

al
[m

]

Bottle

None
Upward
Full
Robust

Cups

0 2 4 6

0

10

20

Ti
lt
an
gl
e
[d
eg
]

0 2 4 6
Time [s]

1Figure 4.11: Samples of trajectories to goal rd1 for the Bottle and Cup arrangements with different
constraints. Free space results are solid lines; results with static obstacles (shown only for Full and
Robust) are dashed. The addition of static obstacles modestly changes the shape of the trajectories.
The Full and Robust trajectories differ between the two object arrangements; in particular, notice
that Full constraints converge to a much smaller tilt angle with the Bottle compared to the Cups.
The Bottle’s higher CoM makes it easier to tip, so it requires a smaller tilt angle when stationary.

and the measurement model is rb = C̄bb, with

C̄b =
[
13 03

]
.

Here we use a sampling time of δt = 10ms, which is the rate at which measurements are received
from the motion capture system. We use process covariance Q̄b = B̄bQbB̄

T
b with Qb = 100013,

measurement covariance R̄b = 0.00113, and initial state covariance Pb0 = 16. The state b and the
projectile dynamics are added to (4.9) to predict the ball’s motion. We found it most effective to use
a form of continuous collision checking in which the controller tries to avoid a tube around the
entire future trajectory of the ball. Once the ball has passed the EE, the constraint is removed.

The results for 20 throws are shown in Figure 4.14 and images from one throw are shown in
Figure 4.13. Throws are split evenly between two directions: toward the front of the EE and toward
its side. In all cases, the controller has less than 0.75 s to react and avoid the ball. Out of the 20
trials, there is one in which the ball would not have penetrated the collision sphere even if the
robot did not move, and another where the bottle was actually dropped. This failure was not due to
a collision, but because the bottle tipped over due to the aggressive motion used to avoid the ball.
Also notice that the controller does not always completely pull the robot out of collision: there is a
trade-off between keeping the object balanced on the tray and avoiding collision. However, since
the collision spheres are conservatively large, we did not experience any failures due to collisions.

CHAPTER 4. MODEL PREDICTIVE CONTROL FOR NONPREHENSILE OBJECT TRANSPORTATION 59

0.0

0.4

0.8
D
ist
an
ce

fro
m

no
m
in
al
[m

]

t = 0.5 s

t = 1.0 s

t = 1.5 s

t = 2.0 s

0 1 2 3 4 5 6 7 8

Time [s]

−0.3

0.0

0.3

0.6

M
in
im

um
di
st
an
ce

to
ob
st
ac
le
[m

]

1Figure 4.12: Top: Distance of EE (solid) and base (dashed) positions from a nominal trajectory with
a virtual obstacle suddenly appearing at different times t (also marked with crosses on x-axis). The
nominal trajectory has no dynamic obstacle. Bottom: Minimum distance between any collision
sphere on the robot and the dynamic obstacle. Notice that in some cases the appearance of the
obstacle actually violates the collision constraints, which could also happen with a physical obstacle
if the collision sphere was conservatively large. Regardless, the Bottle was never dropped.

In these experiments the controller only tries to avoid collisions between the ball and EE; collisions
with the rest of the robot’s body are not avoided. The maximum object error and policy compute
time were 32mm (ignoring the single failure) and 20ms, respectively, across the 20 trials.

4.8.3 Comparison with Aligned Approach

We also subsequently compared our proposed method with an alternative baseline method, which
we call “Aligned”. The Aligned method seeks to keep the tray’s normal n̂ aligned with the linear
acceleration a ≜ v̇−g of the EE, without considering the transported object. Instead of the sticking
constraints (4.5), the controller enforces the constraints

t̂T1 a = 0, t̂T2 a = 0, n̂Ta ≥ 0,

where t̂1 and t̂2 span the tray’s surface plane (orthogonal to n̂). In other words, the controller
always tries to orient the tray normal to the direction of acceleration, such that the total acceleration
in the normal direction is non-negative. This is equivalent to enforcing (4.5) for a frictionless particle
located at the origin of the EE frame, but becomes less effective as the CoM of the actual transported
objects is located farther from the EE frame origin. We test this approach with the original Bottle
arrangement as well as a new “Stack” arrangement, shown in Figure 4.15, which has the bottle

CHAPTER 4. MODEL PREDICTIVE CONTROL FOR NONPREHENSILE OBJECT TRANSPORTATION 60

t t+∆ t+ 2∆ t+ 3∆

Figure 4.13: Example of the robot dodging the volleyball (circled red) while balancing the bottle,
with frames spaced by ∆ = 0.15 s. Once the ball has passed, the EE moves back to the initial
position.

0.55

0.60

0.65

0.70

0.75

Ti
m
e
to

re
ac
t[
s]

Initial Actual

−0.1

0.0

0.1

0.2

0.3
Pe
ne
tra

tio
n
di
st
an
ce

[m
]

1Figure 4.14: The projectile avoidance results over 20 trials. In each plot the red dot is the mean,
the error bars represent the standard deviation, and the blue dots are the minimum and maximum
values. Left: The time at which collision would first occur if the robot did not move. In all cases the
controller has less than 0.75 s to react. Right: Maximum penetration distance between the (virtual)
collision spheres around the ball and EE. The “Initial” values represent the maximum penetration
distances that would have occurred if the robot had not moved. The “Actual” values are what really
happened given that the robot did move.

placed atop a tall cardboard box.
We perform experiments in freespace with the same waypoints as the previous experiments.

However, we do not test rd2 with the Stack arrangement, because in this case if the objects fall,
they fall onto the robot itself, possibly resulting in damage. The results of the experiments are
shown in Figure 4.16. The Aligned approach always drops the Bottle for rd1 but it is successful
for rd2 and rd3 . It always drops the Stack for both rd1 and rd3 ; we do not test rd2 because in this
case if the objects fall, they fall onto the robot itself, possibly resulting in damage. The Aligned
approach fails because angular motion of EE results in higher inertial forces acting at CoMs that
are farther away, so the taller Stack falls over more easily. Our proposed Robust approach is able to
successfully handle both the Bottle and the Stack in all cases.

CHAPTER 4. MODEL PREDICTIVE CONTROL FOR NONPREHENSILE OBJECT TRANSPORTATION 61

0

20

40
O
bj
ec
t

er
ro
r[
m
m
]

rd1
rd2

rd3

Bottle Stack
0

10

20

Co
m
pu

te
tim

e
[m

s]

Bottle Bottle Stack

Aligned Robust

1Figure 4.16: The same results as shown in Figure 4.9 but comparing the Robust and Aligned
approaches with the Bottle and Stack arrangements. The Aligned approach always drops the Bottle
for rd1 but it is successful for rd2 and rd3 . It always drops the Stack for both rd1 and rd3 ; we do
not test rd2 because in this case if the objects fall, they fall onto the robot itself, possibly resulting
in damage. Our proposed Robust approach is successful in all cases.

4.9 Conclusion

Figure 4.15: The “Stack”
arrangement, which con-
sists of the bottle stacked
atop an empty cardboard
box.

We presented the first MPC-based approach for nonprehensile object
transportion with a mobile manipulator and demonstrated its perfor-
mance in simulated and real experiments in a variety of static and dy-
namic scenarios. Notably, our method is also the first to handle moving
obstacles. In addition, we proposed using minimal values of the fric-
tion coefficients to add robustness to frictional uncertainty and other
force disturbances, and demonstrated that this approach is effective and
computationally efficient in real-world experiments.

Chapter 5

Nonprehensile Object Transportation
with Uncertain Inertial Parameters

In this chapter we build upon our approach for the waiter’s problem from Chapter 4 to consider
uncertainty in the transported object’s inertial parameters. It is based on the following publication:

A. Heins and A. P. Schoellig, “Robust Nonprehensile Object Transportation with Uncer-
tain Inertial Parameters,” IEEE Robotics and Automation Letters, vol. 10, iss. 5, 4492–4499,
2025.

This is the first time that moment relaxations have been used to characterize the set of physically
realizable inertial parameters and the first time that this set of parameters has been used to analyze
the worst-case constraint satisfaction of a robotic trajectory.

5.1 Introduction

We build on our previous work on the waiter’s problem for mobile manipulators from Chapter 4.
In contrast to the approach from Chapter 4, which focused on fast online replanning to react to
dynamic obstacles while balancing objects with known properties, here we focus on offline planning
for a transported object with unknown inertial parameters—that is, the values of the mass, center
of mass (CoM), and inertia matrix are not known exactly but rather lie in some set. Our approach
is to plan trajectories to reach a desired EE position while satisfying constraints that ensure the
transported object does not move with respect to the tray (see Figure 5.1). These sticking constraints
(so-called because they ensure the object “sticks” to the tray) depend on the geometric, frictional,
and inertial properties of the object. The geometry of the object can in principle be estimated
visually (e.g., using a camera), while frictional uncertainty can be reduced by using a high-friction
material for the tray surface or by using a low friction coefficient in the planner. However, the
inertial properties can only be identified by moving the object around (see e.g. [23], [94]), which is
time-consuming and could result in the object being dropped and damaged. Instead, we propose

62

CHAPTER 5. NONPREHENSILE OBJECT TRANSPORTATION WITH UNCERTAIN INERTIAL PARAMETERS 63

Figure 5.1: The goal of this work is to move an object on a tray to a desired position without dropping
it, despite the inertial parameters of the object being uncertain. Here our mobile manipulator
is transporting a tall box with uncertain contents. A video of our experiments is available at
http://tiny.cc/upright-robust.

using robust constraints that successfully transport the object despite the presence of substantial
inertial parameter uncertainty. Notably, we assume the CoM can be located at any height within
the object, and that the inertia matrix can take any physically realizable value.

We focus on balancing a single tall object with known geometry but unknown mass and inertia
matrix, and where the CoM is assumed to lie in a known polyhedral convex set. We use the object’s
known geometry to constrain the set of possible inertial parameters. A set of inertial parameters can
only be physically realized on a given shape if there exists a corresponding mass density function
which is zero everywhere outside that shape [23]. We develop necessary conditions for the inertial
parameters to be physically realizable on a bounding shape based on moment relaxations [20]. These
realizability conditions allow us to verify that a planned trajectory does not violate the sticking
constraints for any physically realizable value of the inertial parameters, providing theoretical
guarantees for the robustness of our planned trajectories. In summary, the contributions of this
work are:

• a planner for nonprehensile object transportation that explicitly handles objects with uncer-
tain CoMs, extending the framework from Chapter 4;

• a theoretical analysis of the sticking constraint satisfaction in the presence of a bounded

http://tiny.cc/upright-robust

CHAPTER 5. NONPREHENSILE OBJECT TRANSPORTATION WITH UNCERTAIN INERTIAL PARAMETERS 64

CoM and any physically realizable inertia matrix, based on moment relaxations [20]—this is
the first time that moment relaxations have been used to characterize the set of physically
realizable inertial parameters and the first time that this set has been used to analyze the
worst-case constraint satisfaction of a robotic trajectory;

• simulations and hardware experiments demonstrating that our proposed robust constraints
successfully transport the object—despite using tall objects with high inertial parameter
uncertainty—while baseline approaches drop the object;

• an open-source implementation of our planner, available at https://github.com/utiasDSL/
upright.

5.2 Related Work

In Chapter 4, we proposed the first whole-body MPC for a mobile manipulator solving the waiter’s
problem [2]. In contrast to other MPC approaches like [28] and [84], which are only applied to fixed-
based arms, our MPC approach optimizes the joint-space trajectory online while considering task-
space objectives and constraints, which allows us to respond quickly to changes in the environment
like dynamic obstacles. Other approaches to the waiter’s problem include offline planning [28], [79],
[95], [96] and reactive control [74], [75], [80], [81]. However, most of these approaches (including
ours from Chapter 4) assume that the inertial parameters of the transported objects are known. In
this work, we are interested in solving the waiter’s problem despite inertial parameter uncertainty.

One possible approach to handling inertial parameter uncertainty is to simulate the motion
of a pendulum with the EE, which naturally minimizes lateral forces acting on the transported
object without explicitly modelling it. However, so far this approach has only been used to
minimize slosh when transporting liquids [74], [75] rather than (uncertain) rigid bodies. Another
approach is [96], which develops a robust planner for the waiter’s problem based on reachability
analysis, with parameter uncertainty represented using polynomial zonotopes. In contrast to our
work, [96] focuses on small amounts of uncertainty (e.g., a 5% mass and inertia reduction) in both
the transported objects and the links of the robot. The resulting trajectories are also quite slow,
with negligible inertial acceleration (i.e., quasistatic). Instead, we achieve fast and dynamic motion
with tall objects under high parameter uncertainty (i.e., CoMs located at any height in the object
and any realizable inertia matrix), but we assume that uncertainty in the robot model is negligible
(i.e., we use a well-calibrated industrial robot).

Our formulation of robust sticking constraints draws inspiration from legged robot balance
control [32], [97]–[99]. Indeed, the task of balancing an object on a tray is quite similar to balancing
a legged robot represented with a reduced-order model, which uses the centroidal dynamics of
the robot (i.e., the dynamics of a rigid body). In [97]–[99], the CoM of the robot is assumed to be
uncertain and motions are generated that keep the robot balanced for any possible CoM value in a
polyhedral set. In particular, we follow a similar approach to [99] for handling polyhedral CoM

https://github.com/utiasDSL/upright
https://github.com/utiasDSL/upright

CHAPTER 5. NONPREHENSILE OBJECT TRANSPORTATION WITH UNCERTAIN INERTIAL PARAMETERS 65

uncertainty by enforcing sticking constraints corresponding to a CoM located at each vertex of the
set, and demonstrate its effectiveness for the waiter’s problem. In contrast to these approaches,
however, we are also interested in modelling and handling uncertainty in the inertia matrix.
While the CoM can reasonably and intuitively be assumed to live in some convex polyhedral
set, the inertia matrix is more complicated. When considering the inertia matrix, the set of
physically realizable inertial parameters is spectrahedral (i.e., it can be represented using linear
matrix inequalities (LMIs)) rather than polyhedral, as discussed in [23]. We develop necessary
conditions for the inertial parameters to be physically realizable on a bounding shape, based on
moment relaxations [20], which we use as constraints in a semidefinite program (SDP) to verify
that our planned trajectories do not violate any sticking constraints despite inertial parameter
uncertainty. Moment relaxations (i.e., Lasserre’s hierarchy) have previously been applied in robotics
for tasks like certifiable localization [100] and trajectory planning [101], but not to bounds on the
inertial parameters of a rigid body.

5.3 Background

We begin by introducing some mathematical preliminaries, which we will use in Section 5.7.3 to
verify that our trajectories do not violate any sticking constraints for any physically realizable
value of the transported object’s inertial parameters.

5.3.1 Polyhedron Double Description

Any convex polyhedron P can be described as either the convex hull of its vertices or as a finite
intersection of half spaces; this is called the double description of P . When P is also a cone, it is
called a polyhedral convex cone (PCC) and can be described using either the face or span form [32]:

P = face(U) = {y | Uy ≤ 0}
= span(V) = {V z | z ≥ 0}.

Following [102], we use the superscript (·)F to denote conversion from span to face form, such
that face(UF) = span(U), and we use (·)S to denote the conversion from face to span form. We
perform the conversions using the cdd library [103].

5.3.2 Moment Relaxations

The moment problem asks when a sequence corresponds to the moments of some Borel measure.
We will make use of SDP relaxations for the moment problem (moment relaxations), which we
briefly summarize here from [20]. Define Nn

d = {α ∈ Nn |∑n
i=1 αi ≤ d}. Let r ∈ Rn be a point

and let α ∈ Nn
d be a vector of exponents applied elementwise, such that rα = rα1

1 . . . rαn
n . Let f :

Rn → R be a polynomial of degree at most d. Then we can write f(r) =
∑

α∈Nn
d
fαr

α = fTbd(r),
where f = {fα} ∈ Rs(d) is the vector of the polynomial’s coefficients with size s(d) ≜

(
n+d
d

)

CHAPTER 5. NONPREHENSILE OBJECT TRANSPORTATION WITH UNCERTAIN INERTIAL PARAMETERS 66

and bd(r) = [1, r1, . . . , rn, r
2
1, r1r2, . . . , r

d
n] ∈ Rs(d) is the basis vector for polynomials of degree

at most d in graded lexicographical order. Given a vector z = {zα} ∈ Rs(d), the Riesz functional

associated with z is Lz(f) =
∑

α∈Nn
d
fαzα, which maps a polynomial f : Rn → R of degree d to

a scalar value. Given a vector y ∈ Rs(2d), the dth-order moment matrix associated with y is

Md(y) = Ly(bd(r)bd(r)
T) ∈ Rs(d)×s(d),

where Ly is applied elementwise to each element of the matrix bd(r)bd(r)
T , such that the el-

ement rαrβ = rα+β , with α,β ∈ Nn
d , is mapped to the value yα+β . In addition, given a

polynomial p : Rn → R of degree 2d, the localizing matrix associated with p and y is Md(py) =

Ly(p(r)bd(r)bd(r)
T).

Suppose we want to determine if a given sequence y ∈ Rs(2d), known as a truncated moment

sequence (TMS), represents the moments of some Borel measure γ supported in a compact semi-
algebraic set K = {r ∈ Rn | pj(r) ≥ 0, j = 1, . . . , np}, where each pj(r) is a polynomial with
degree 2vj (even) or 2vj − 1 (odd). That is, we want to know if there exists γ : Rn → R+ such that

Md(y) =

∫
K
bd(r)bd(r)

T dγ(r),

which is known as the truncated K-moment problem (TKMP). If such a γ exists, we say that y is
realizable on K. A necessary condition for γ to exist (see Theorem 3.8 of [20]) is that for any r ≥ d,
we can extend y ∈ Rs(2d) to some y′ = [yT , . . .]T ∈ Rs(2r) that satisfies

Mr−vj (pjy
′) ≽ 0, j = 0, . . . , np, (5.1)

where we have also defined p0(r) = 1 with v0 = 0. The moment constraints (5.1) become tighter
as r increases, forming a hierarchy of SDP relaxations for the TKMP.

Example

For example, suppose n = 3 and let

y =
[
y000 y100 y010 y001 y200 y110 y101 y020 y011 y002

]T
∈ R10

CHAPTER 5. NONPREHENSILE OBJECT TRANSPORTATION WITH UNCERTAIN INERTIAL PARAMETERS 67

be a TMS. Then b1(r) = [1, r1, r2, r3]
T and the first-order moment matrix is

M1(y) = Ly(b1(r)b1(r)
T)

= Ly



1 r1 r2 r3

r1 r21 r1r2 r1r3

r2 r1r2 r22 r2r3

r3 r1r3 r2r3 r23




=


y000 y100 y010 y001

y100 y200 y110 y101

y010 y110 y020 y011

y001 y101 y011 y002


Next, suppose K ⊂ R3 is an axis-aligned cube of side length 2a centered at the origin. Then we
can write

K = {r ∈ R3 | pj(r) ≥ 0, j = 1, . . . , 6},

where

p1(r) = a− r1, p2(r) = a− r2, p3(r) = a− r3,

p4(r) = a+ r1, p5(r) = a+ r2, p6(r) = a+ r3,

are (affine) polynomials that each define a face of the cube and vj = 1 for each j = 1, . . . , 6.
Suppose we want to find an upper bound on some linear function of y subject to the constraint
that y is realizable onK. We need to enforce constraints of the form (5.1) on the localizing matrices
corresponding to each polynomial pj . Letting r = 2, the localizing matrix corresponding to p1 is

Mr−v1(p1y
′) = M1(p1y

′)

= Ly′(p1(r)b1(r)b1(r)
T)

= Ly′

(a− r1)


1 r1 r2 r3

r1 r21 r1r2 r1r3

r2 r1r2 r22 r2r3

r3 r1r3 r2r3 r23




=


ay000 − y100 ay100 − y200 ay010 − y110 ay001 − y101

ay100 − y200 ay200 − y300 ay110 − y210 ay101 − y201

ay010 − y110 ay110 − y210 ay020 − y120 ay011 − y111

ay001 − y101 ay101 − y201 ay011 − y111 ay002 − y102

 ,

where

y′ =
[
yT y300 y210 y201 y120 y111 y102 y030 . . . y003 . . . y004

]T
∈ R35

CHAPTER 5. NONPREHENSILE OBJECT TRANSPORTATION WITH UNCERTAIN INERTIAL PARAMETERS 68

is an extended TMS with dimension s(2r) = 35. The localizing matrices for the remaining
polynomials are constructed similarly. If we were to increase r, y′ and the localizing matrices
would increase in size and include higher-order terms.

Finally, suppose f(y) = dTy is the linear function for which we want to compute an upper
bound, where d ∈ R10 is a known constant. The upper bound is given by the solution to the SDP

maximize
ỹ

d′Ty′

subject to M2−vj (ỹ) ≽ 0, j = 0, . . . , 6,

where d′ = [dT ,0T]T such that d′Ty′ = f(y).

5.4 Modelling

Next we present the models of the robot and object.

5.4.1 Robot Model

As in Chapter 4, we consider a velocity-controlled mobile manipulator with statex = [qT ,νT , ν̇T]T ∈
Rnx , where q is the generalized position, which includes the planar pose of the mobile base and the
arm’s joint angles, and ν is the generalized velocity. The input u ∈ Rnu is the generalized jerk. We
use a kinematic model, which we represent generically as ẋ = a(x) +B(x)u, with a(x) ∈ Rnx

and B(x) ∈ Rnx×nu . Though the actual commands sent to the robot are velocities, including
acceleration and jerk in the model allows us to reason about the sticking constraints and encourage
smoothness.

5.4.2 Object Model

We model the transported object as a rigid body subject to the Newton-Euler equations (2.1),
expressed in a frame attached to the EE, where the GIW acting on the object is

wGI ≜ Ξη − ad(ξ)TΞξ, (5.2)

with η the difference between the spatial acceleration and gravity. Recall that the object’s spatial
mass matrix is defined as

Ξ ≜

[
I mc×

−mc× m13

]
,

where m is the object’s mass, c is the position of the object’s CoM, and I is its inertia matrix.

CHAPTER 5. NONPREHENSILE OBJECT TRANSPORTATION WITH UNCERTAIN INERTIAL PARAMETERS 69

C1

C2

C3

C4

Tray

Balanced
object

Set of possible
CoMs

Figure 5.2: A box (red) on a tray, with four contact points C1–C4 located at the vertices of the base.
We assume that the box’s center of mass (CoM) is not known exactly, but rather only known to lie
inside some polyhedral set (green).

5.5 Sticking Constraints with Uncertain Inertial Parameters

We want to enforce constraints on the robot’s motion so that the transported object does not move
relative to the EE (i.e., it “sticks” to the EE). These sticking constraints prevent the object from
sliding, tipping, or breaking contact.

5.5.1 Contact Force Constraints

We can ensure an object sticks to the EE by including all contact forces directly into the motion
planner and constraining the solution to be consistent with the desired (sticking) dynamics, as
we did in Chapter 4. We assume there are nc contact points {Ci}nc

i=1 between the object and
tray (see Figure 5.2), with corresponding contact forces {fi}nc

i=1. By Coulomb’s law, each contact
force fi ∈ R3 must lie inside its friction cone. Following Section 2.2.2, we gather the contact forces
into the vector ζ = [fT

1 , . . . ,f
T
nc
]T . The set of all feasible contact forces lies in the CWC defined

in (2.15) as
WC = {Gζ | Fζ ≤ 0} ⊆ R6,

where G is known as the grasp matrix. From (2.1), we must have wGI ∈ WC for the object to
remain stationary relative to the EE.

5.5.2 Robustness to Inertial Parameter Uncertainty

Let θ ∈ R10 be the inertial parameter vector for the object as defined in (2.6). Let us assume that
the exact value of θ is unknown, but that it lies inside a set Θ. Since wGI is linear in θ [94], we can

CHAPTER 5. NONPREHENSILE OBJECT TRANSPORTATION WITH UNCERTAIN INERTIAL PARAMETERS 70

write the set of possible GIWs under inertial parameter uncertainty as

WGI(ξ,η) = {Y (ξ,η)θ | θ ∈ Θ}

where Y (ξ,η) ∈ R6×10 is known as the regressor matrix. To ensure the sticking constraints are
satisfied for any θ ∈ Θ, we want to generate EE motions (ξ,η) that satisfy

WGI(ξ,η) ⊆ WC (5.3)

at all timesteps. More concretely, (5.3) is satisfied if and only if, for each θ ∈ Θ, there exists a set of
contact forces ζ satisfying Y (ξ,η)θ = Gζ and Fζ ≤ 0.

We can enforce (5.3) using only constraints on the extreme points ex(Θ) of Θ. To see this,
observe that sinceWC is convex, any convex combination of points inWC also lies inWC. And
since any θ ∈ Θ is a convex combination of points in ex(Θ), it follows that Y (ξ,η)θ ∈ WC for
any θ ∈ Θ as long as Y (ξ,η)θ ∈ WC for all θ ∈ ex(Θ).

Furthermore, for lightweight objects, we can ignore the value of the object’s mass when
transporting a single object.1 To see this, suppose the true inertial parameter vector is θ =

[m,mcT , vech(I)T]T ∈ Θ. SinceWC is a convex cone and m > 0, it follows that Y (ξ,η)θ ∈ WC

if and only if Y (ξ,η)θ̂ ∈ WC, where θ̂ ≜ θ/m is the mass-normalized parameter vector. In other
words, for any θ ∈ Θ, we can always instead use θ̂ to enforce the sticking constraints, which is
independent of the true mass. This result holds for any object that is not in contact with any others
(except of course the tray). However, when multiple objects are in contact with each other, the
force transmitted between them depends on their relative masses, so we can no longer ignore them.

Finally, we will also ignore uncertainty in the inertia matrix while planning trajectories, as it
would be expensive to enforce the LMI constraint required for physical realizability [23]. Instead, we
will check our trajectories after planning to verify that the sticking constraints are satisfied for any
physically realizable inertial parameters—our experiments suggest that handling large uncertainty
in the CoM gives us enough robustness to handle any physically realizable inertia matrix as well.
We will return to the analysis of physically realizable inertial parameters in Section 5.7. For now,
since we are ignoring uncertainty in the mass and inertia matrix, we are left with uncertainty in
the CoM. Similar to [99], our approach therefore is to assume that c belongs to a known polyhedral
set C with nv vertices (see Figure 5.2) and enforcing sticking constraints for nv objects, which differ
only in that the ith object has CoM located at the ith vertex of the CoM uncertainty set. This is
equivalent to enforcing (5.3).

1We are assuming that the object has a small enough mass for the robot’s internal position controller to accurately
track the desired trajectory despite the uncertain payload.

CHAPTER 5. NONPREHENSILE OBJECT TRANSPORTATION WITH UNCERTAIN INERTIAL PARAMETERS 71

5.6 Robust Planning

Our goal is to generate a state-input trajectory for our robot that satisfies the robust sticking
constraints developed in the previous section. We formulate the motion planning problem as a
constrained optimal control problem (OCP), similar to the formulation in Chapter 4. In contrast to
that formulation, however, which solves the OCP online in a model predictive control framework,
we solve it once offline with a longer time horizon and then track the resulting optimal trajectory;
we found this approach to be more reliable in our experiments. In particular, we found that a
longer time horizon converged to the desired position faster with fewer oscillations, and that
updating the desired trajectory online could cause additional EE vibration that made it more likely
for tall, uncertain objects to be dropped. The trajectories x(t), u(t), and ζ(t) are optimized over a
duration T by solving a nonlinear optimization problem. Suppressing the time dependencies, the
problem is

argmin
x,u,ζ

1

2

∫ T

0
ℓ(x,u) dt

subject to ẋ = a(x) +B(x)u (robot model)

WGI(x) ⊆ WC (sticking)

¯
x ≤ x ≤ x̄ (state limits)

¯
u ≤ u ≤ ū (input limits)

φ(xf) = 0 (terminal constraint)

(5.4)

where the stage cost is

ℓ(x,u) = ∥∆r(x)∥2Wr
+ ∥x∥2Wx

+ ∥u∥2Wu
,

with ∥ · ∥2W = (·)TW (·) for weight matrix W , and ∆r(x) = rd − re(x) is the EE position
error between the desired position rd and the current position re(x). The sticking constraints
implicitly depend on the contact forces ζ, and we have expressed WGI as a function of x via
forward kinematics. The terminal constraint φ(xf) = [∆r(xf)

T ,νT
f , ν̇

T
f]

T = 0 acts only on the
final state xf ≜ x(T) and steers it toward a stationary state with no position error.

We solve (5.4) by discretizing the planning horizon T with a fixed timestep ∆t and using
sequential quadratic programming (SQP) via the open-source framework OCS2 [87] and quadratic
programming solver HPIPM [39], with required Jacobians computed using automatic differentiation.
We use the Gauss-Newton approximation for the Hessian of the cost and we soften all state limits
and sticking constraints: given a generic state constraint g(x) ≥ 0, we add a slack variable s ≥ 0 to
relax the constraint to g(x)+s ≥ 0, and theL2 penaltywss

2 is added to the cost with weightws > 0.
As in Chapter 4, we also plan while assuming that there is zero contact friction between the tray
and transported object (i.e., tangential forces are to be avoided, but small ones are allowed because
the constraints are soft). This provides robustness to uncertain friction and other disturbances
while also reducing the computational cost of solving (5.4), since each contact force variable need

CHAPTER 5. NONPREHENSILE OBJECT TRANSPORTATION WITH UNCERTAIN INERTIAL PARAMETERS 72

only be represented by a single non-negative scalar representing the normal force (see the previous
chapter for more details). Given the soft constraints and time discretization of (5.4), robust sticking
is not guaranteed but is heavily encouraged.

Once we have solved (5.4) to obtain the planned optimal trajectoryxd(t) = [qTd (t),ν
T
d (t), ν̇

T
d (t)]

T ,
we need to track it online. At each control timestep, we generate the commanded velocity νcmd

using the simple affine control law νcmd = Kp(qd − q) + νd, where Kp ∈ S9++ is a gain matrix.

5.7 Verifying Sticking Constraint Satisfaction

Let us now consider uncertainty in the inertia matrix. We want a way to show that our choice to
ignore inertia matrix uncertainty in the planner is justified; that is, given a trajectory, we want to
verify that the sticking constraints are not violated for any realizable value of the inertia matrix. In
this section we develop an SDP to determine an upper bound on the maximum constraint violation
given the uncertain inertial parameters and bounding shape for the object.

5.7.1 Double Description of the Contact Wrench Cone

Following [32], we build the face form of the CWC. First, notice that (2.13) describes a PCC face(F).
Converting (2.13) to span form and substituting into (2.15), we getWC = {GF Sz | z ≥ 0}. Next,
letting H = (GF S)F ∈ Rnh×6, we have the face form of the CWCWC = {w ∈ R6 |Hw ≤ 0}.
This form allows us to write the robust sticking constraints (5.3) as

HY (ξ,η)θ ≤ 0 ∀θ ∈ Θ. (5.5)

Let hT
i be the ith row of H . Then we can rewrite the constraint (5.5) as a set of inner optimization

problems (
maximize

θ∈Θ
hT
i Y (ξ,η)θ

)
≤ 0, (5.6)

with one problem for each of the nh rows. This inequality form of the sticking constraints will
allow us to solve for the worst-case value of each constraint. However, we first need to determine
appropriate bounds on the set Θ.

5.7.2 Physically Realizable Inertial Parameters

We want to constrain the inertial parameters to correspond to some mass density ρ : R3 → R+

supported entirely in a compact bounding shape K ⊂ R3 containing the transported object, such
that

Θ =

{
θ ∈ R10 | Π(θ) =

∫
K
r̃r̃T dρ(r)

}
,

where Π(θ) is the pseudo-inertia matrix defined in (2.3), which depends linearly on θ. That is, we
want θ to be physically realizable on K.

CHAPTER 5. NONPREHENSILE OBJECT TRANSPORTATION WITH UNCERTAIN INERTIAL PARAMETERS 73

Let us apply the moment relaxation machinery from Section 5.3.2 to the problem of physically
realizable inertial parameters. We have dimension n = 3 and degree d = 1. The key insight is that
the pseudo-inertia matrix Π(θ) is just a permutation2 of the first-order moment matrix M1(y),
where y ∈ R10 is a TMS. In particular, we have

M1(y) = PΠ(θ)P T (5.7)

where

P =

[
0T 1

13 0

]
is a permutation matrix. Furthermore, since M1 and Π are linear functions of y and θ, respectively,
we can include (5.7) as a constraint in a convex program to map between y and θ. Thus, instead
of optimizing over θ constrained to lie in Θ, we will jointly optimize over θ and y with the
constraint (5.7) relating the two variables and additional constraints to ensure y is realizable on K.
In particular, suppose K = {r ∈ R3 | pj(r) ≥ 0, j = 1, . . . , np}, where each pj(r) is a polynomial
with degree 2vj (even) or 2vj − 1 (odd), and define p0(r) = 1 with v0 = 0. Then (5.1) gives us
necessary conditions for the TMS y to be realizable on K using localizing matrices. Putting it
all together, suppose we want to find an upper bound on a linear function f(θ) = dTθ subject
to θ ∈ Θ, where d ∈ R10 is a known constant. The upper bound is given by the solution to the SDP

maximize
θ,y′

dTθ

subject to M1(y
′) = PΠ(θ)P T

Mr−vj (y
′) ≽ 0, j = 0, . . . , np,

(5.8)

where the two constraints come from (5.7) and (5.1), and y′ ∈ Rs(2r) is an extended TMS. Next we
will see how to use an SDP similar to (5.8) to check for constraint violations along our planned
trajectories.

5.7.3 Worst-Case Sticking Constraints

Given an EE trajectory, we want to determine if any realizable value of the inertial parameters
would violate the sticking constraints (5.6) at any time. That is, we would like to know if the optimal
value of

maximize
θ∈Θ

hT
i Y (ξ,η)θ (5.9)

is positive for any row hT
i of H at any time instant of the trajectory. Letting dT = hT

i Y (ξ,η),
the problem (5.9) can be relaxed to the SDP (5.8). Note that (5.8) is a relaxation of (5.9) because the
constraints in (5.8) are only necessary for physical realizability, not sufficient, and therefore the
solution of (5.8) provides an upper bound to the solution of (5.9). We also add constraints to set the

2The need for the permutation matrix simply arises from different conventions in the robot dynamics literature [23]
and the TKMP literature [20].

CHAPTER 5. NONPREHENSILE OBJECT TRANSPORTATION WITH UNCERTAIN INERTIAL PARAMETERS 74

mass m(θ) = 1, since the sticking constraints are independent of mass for a single object, and to
constrain the CoM c(θ) to be located within some smaller convex polyhedron C ⊂ K (we typically
assume the CoM is not located right at the boundary of K). This yields the SDP

maximize
θ,y′

hT
i Y (ξ,η)θ

subject to M1(y
′) = PΠ(θ)P T ,

M2−vj (pjy
′) ≽ 0, j = 0, . . . , np,

m(θ) = 1,

c(θ) ∈ C,

(5.10)

where we have used order r = 2. For simplicity, we assume our bounding shape K is a convex
polyhedron, so each bounding polynomial has the affine form pj(r) = αT

j r + βj for some
constants αj ,βj ∈ R3, and therefore vj = 1 for each j = 1, . . . , np.

We verify that a planned trajectory is robust to inertial parameter uncertainty by solving (5.10)
pointwise at a fixed frequency along the trajectory. If the optimal value of (5.10) is always non-
positive, then the constraint is not violated; we assume that the time discretization is fine enough
that the constraints are not violated between timesteps. Furthermore, we can verify robustness
to uncertain friction coefficients at the same time by constructing WC and thus H with low
friction coefficients: if the constraints are never violated, then any combination of higher friction
coefficients and realizable inertial parameters will also satisfy the constraints.

One could also consider enforcing full realizability constraints directly in the planning prob-
lem (5.4) to ensure the planned trajectories are robust a priori. However, this would be computation-
ally expensive and numerically challenging because of the LMI constraints required for physical
realizability combined with the nonlinearity of the problem. We leave this for future work.

5.8 Simulation Experiments

We begin the evaluation of our proposed robust planning approach in simulation using the PyBullet
simulator and a simulated version of our experimental platform, a 9-DOF mobile manipulator
consisting of a Ridgeback mobile base and UR10 arm, shown in Figure 5.1. In all experiments
(simulated and real) we use ∆t = 0.1 s, T = 10 s, and weights

Wr = 13, Wx = diag(019, 10
−119, 10

−219),

Wu = 10−319, ws = 100.

CHAPTER 5. NONPREHENSILE OBJECT TRANSPORTATION WITH UNCERTAIN INERTIAL PARAMETERS 75

K C

h

15 cm 15 cm

Top (orange point)

Center (blue point)

Robust (green region)

Figure 5.3: We transport a cuboid-shaped object K (red) with an uncertain CoM contained in C
(green). We test three variations of the sticking constraints: assume the CoM is at the object’s
centroid (Center), assume it is centered at the top of the object (Top), and Robust, in which the
controller enforces sticking constraints for eight different objects, where each has its CoM at one
of the vertices of C.

The state and input limits are

q̄ =

[
10e3

2πe6

]
, ν̄ =

1.1e22e3

3e4

 , ˙̄ν =

2.5e21

10e6

 , ū =

[
20e3

80e6

]
,

where x̄ = [q̄T , ν̄T , ˙̄νT]T ,
¯
x = −x̄,

¯
u = −ū, and en denotes an n-dimensional vector of ones.

The control gain is Kp = 19 and the simulation timestep is 0.1ms.
We are interested in cases where the inertial parameters of the transported object are uncertain

and this uncertainty can result in task failures (i.e., the object is dropped) if the uncertainty is
ignored. We use a tall box K with a 15 cm × 15 cm base and height h (see Figure 5.3) as the
transported object. This object is tall relative to its support area and therefore prone to tipping
over, particularly if the inertial parameters are not known exactly. Suppose we assume that the
CoM can lie anywhere in a box C with dimensions 12 cm × 12 cm × h, centered within K; that
is, the CoM can be located anywhere in the object as long as it is at least 1.5 cm from the sides.
The simulated friction coefficient between the box and tray is µ = 0.2. We compare three sets of
sticking constraints (again, see Figure 5.3):

• Center: The CoM is located at the center of C;

• Top: The CoM is centered on the top face of C;

• Robust: A set of eight sticking constraints are used, corresponding to a CoM at each vertex
of C.

CHAPTER 5. NONPREHENSILE OBJECT TRANSPORTATION WITH UNCERTAIN INERTIAL PARAMETERS 76

30 40 50 60
Object height [cm]

0

25

50

75

100

Su
cc
es
sr

at
e
[%
]

Center
Top
Robust

1Figure 5.4: Success rate of the different types of sticking constraints for all 135 combinations of
desired positions, CoMs, and inertias for each object height and constraint method (1620 total runs).
The Robust constraints always successfully transport the object, while the other constraint types
result in an increasing number of failures as the object height increases; the rate varies slightly
with the number of SQP iterations ns. Here the bar shows ns = 3 and the black dot ns = 10.

In all cases, the inertia matrix used in the planner is set to correspond to a uniform mass density.
The first two constraint methods are baselines where we are not explicitly accounting for the
uncertainty in the parameters. Intuitively, it is more difficult to transport an object with a higher
CoM, so we may expect the Top constraints to be more successful than the Center constraints. In
contrast to these baselines, our proposed Robust constraints explicitly handle uncertainty in the
CoM.

We test all combinations of the following: three desired positions rd1 = [−2, 1, 0]T , rd2 =

[0, 2, 0.25]T , and rd3 = [2, 0,−0.25]T (in meters), 15 different simulated CoM positions (one at the
center of C, eight at the vertices of C, and six at the centers of the faces of C), and three different
values for the inertia matrix, computed as follows. We solve a convex optimization problem to
find the diagonal inertia matrix about the CoM which corresponds to a set of point masses at the
vertices of K with the maximum smallest eigenvalue. This gives us a large realizable inertia matrix
value I ; we then also test with the smaller inertia values 0.5I and 0.1I . The simulated mass is
fixed to m = 1kg. We test each of the 135 total combinations of trajectory, CoM, and inertia matrix
for different object heights h and constraint methods.

The success rates for the simulations are shown in Figure 5.4. The success rate is the percentage
of runs (out of the 135 total per object) that successfully deliver the object to the goal without it
being dropped from the tray. The Robust constraints are always successful (with a maximum object
displacement of only 2mm). The Top and Center constraints produce fewer successful runs as the
object height increases, which suggests that the sticking constraints are more sensitive to parameter
error for taller objects. The success rate of the Top and Center constraints varies slightly when
using more SQP iterations ns to solve (5.4), at the cost of a longer solve time. We report the results
for ns = 3 and ns = 10 (the Robust constraints are completely successful for both values of ns, so
we only report ns = 3); increasing to ns = 20 did not produce a higher success rate. The average

CHAPTER 5. NONPREHENSILE OBJECT TRANSPORTATION WITH UNCERTAIN INERTIAL PARAMETERS 77

Table 5.1: Maximum constraint violation for each object height and sticking constraint method
using the moment conditions for physical realizability. A negative value means that the constraints
are never violated for any realizable inertial parameters, which is only the case using our proposed
Robust constraints. These results are for ns = 3; the values with ns = 10 are very similar.

Height [cm] Center Top Robust

30 2.48 4.51 −1.15
40 5.03 7.19 −0.97
50 8.21 9.09 −0.77
60 11.96 10.50 −0.56

solve times for the Center constraints are 110ms (ns = 3) and 310ms (ns = 10); for the Top
constraints 111ms (ns = 3) and 324ms (ns = 10); and for the Robust constraints 324ms. Even
when more compute time is used to refine the trajectory, the baselines are still not as successful as
the Robust constraints.

While the results in Figure 5.4 show that our proposed constraints are robust for particular
combinations of CoM positions and inertia matrices, Table 5.1 shows the maximum possible
sticking constraint violations for any realizable inertial parameter value, obtained by solving (5.10)
at each point along the planned trajectory (discretized with a 10ms interval). Solving (5.10) for
all i = 1, . . . , nh at a single timestep took about 2.2 s, with nh = 26 for our experimental setup.
The Robust constraints have no violation for any possible value of the inertia matrix (while the
Center and Top constraints always do), justifying our decision to ignore uncertainty in the inertia
matrix within the planner. While negative violation implies failure should not occur; positive
violation does not mean that it will occur.

Finally, recall that the simulated value of the friction coefficient between the tray and object
is µ = 0.2. This value does not impact the behavior of the planner because the planner assumes µ =

0 and then tries to satisfy the softened sticking constraints approximately. However, the underlying
value of µ can potentially affect the amount of constraint violation, since hi in (5.10) depends
on the friction coefficient. Interestingly, we evaluated the constraint violation for the robust
constraints with h = 60 cm and µ = 0.1 and found the maximum constraint violation to be the
same as with µ = 0.2, which suggests that the friction coefficient is not the limiting factor when
transporting tall objects like those used here.

5.9 Hardware Experiments

We also perform experiments on our real mobile manipulator balancing a cardboard box, as shown
in Figure 5.1. We test two heights of box, Box1 and Box2, each containing a bottle filled with sugar
in one corner to offset the CoM (see Figure 5.5). Box1 has a height of h1 = 28 cm and a square
base with side length 15 cm. Its total mass is 933 g, with the bottle contributing 722 g. Box2 is
made of two stacked boxes attached together, with the top one containing the bottle. Its total
mass is 1046 g and its height is h2 = 56 cm; its base dimensions are the same as Box1. A rigid

CHAPTER 5. NONPREHENSILE OBJECT TRANSPORTATION WITH UNCERTAIN INERTIAL PARAMETERS 78

Figure 5.5: Our transported objects are boxes containing a bottle filled with sugar to offset the
CoM and to make the task of balancing more difficult. One cannot tell how the box is packed (and
therefore what its mass distribution is) just by looking at it. Box2 (shown on the right) consists
of two boxes attached together; Box1 is a single box. A firm base board (green) is attached to the
bottom box to provide a consistent contact area with the tray.

board is attached to the base of the boxes to ensure consistent contact with the tray (again, refer
to Figure 5.5). The friction coefficient between the boxes (with the attached base board) and the
tray was experimentally measured to be µ = 0.29. Position feedback is provided for the arm by
joint encoders at 125Hz and for the base by a Vicon motion capture system at 100Hz. The laptop
specifications and planner parameters are the same as in simulation. The control loop is run at the
arm’s control frequency of 125Hz.

We consider the scenario when the planner does not know how the box is packed, and therefore
its inertial parameters are not known exactly. We again test the Center, Top, and Robust constraints
using the desired positions rd1 and rd2 .3 The Robust constraints assume the CoM lies in the
cuboid C with dimensions 12 cm× 12 cm× hi, where i = 1, 2 corresponds to Box1 or Box2, which
is large enough to contain any possible centroid of the bottle no matter its position in the box.
We perform up to three runs of each combination of desired position and constraint method; if a
given combination method fails before completing three runs, we stop to avoid extra damage to the
boxes. Using ns = 3, each of the constraint methods successfully transported Box1 for three runs,
but only the Robust constraints were able to do so with Box2 (with either ns = 3 and ns = 10).
With both values of ns, the Center constraints failed immediately with rd1 , and completed one run
of rd2 before dropping the box on the second run; the Top constraints failed immediately for both
desired positions. The maximum object displacement errors (for ns = 3) are shown in Figure 5.6.
The Robust constraints produce smaller errors with both Box1 and Box2 (there is still some error,
due to unmodelled effects like vibrations and inevitable model inaccuracies); the Center and Top

3We did not use the desired position rd3 because in that case if the box falls, it falls onto the robot, possibly causing
damage.

CHAPTER 5. NONPREHENSILE OBJECT TRANSPORTATION WITH UNCERTAIN INERTIAL PARAMETERS 79

Box1 Box20

10

20

30

40

50
M
ax
im

um
ob
je
ct

er
ro
r[
m
m
]

rd1

Center
Top
Robust

Box1 Box2

Object
dropped!

rd2

1Figure 5.6: Maximum object displacement error for the different constraint methods, desired
positions, and box objects. The object displacement error is the maximum distance the object
moves from its initial position relative to the tray. The errors are similar between each method with
Box1 (the shorter box), but the Center and Top baselines fail with Box2 (the taller box), while the
proposed Robust constraints successfully transport it.

Table 5.2: The maximum planned EE velocity and acceleration as well as the root-mean-square
tracking error of the arm’s joint angles and the base’s position and yaw angle in the hardware
experiments.

Box1 Box2
Center Top Robust Center Top Robust

Max. vel. [m/s] 2.32 2.36 1.27 2.36 2.43 1.08
Max. acc. [m/s2] 4.24 4.46 1.17 4.46 4.88 0.87

Arm err. [deg] 0.38 0.37 0.22 0.39 0.33 0.21
Base pos. err. [cm] 2.67 2.82 1.96 2.56 3.16 1.48
Base yaw err. [deg] 1.80 1.90 0.62 1.68 2.25 0.31

baselines obviously produce large errors with Box2 since the box was dropped. The planning times
were similar to those in simulation.

The convergence of the EE to the desired position for rd1 is shown in Figure 5.7 and additional
metrics are in Table 5.2. While the Center and Top constraint methods converge faster, this comes
with the risk of dropping uncertain objects, especially taller ones like Box2. While the robust
constraints still produce fast motion, the maximum velocity and acceleration is reduced compared
to the other baselines. The root-mean-square tracking error (RMSE) for the arm is quite low,
which suggests that neglecting the object mass was reasonable. The RMSE for the base is higher,
suggesting that adding mobility to the waiter’s problem requires additional robustness to error.

CHAPTER 5. NONPREHENSILE OBJECT TRANSPORTATION WITH UNCERTAIN INERTIAL PARAMETERS 80

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0
D
ist
an
ce

[m
]

Box1

0 2 4 6 8 10

Box2

Center
Top
Robust

Time [s]

1Figure 5.7: Distance between the EE position and the desired position over time for desired
position rd1 and each sticking constraint method. The trajectories with the Center and Top
constraints, in which only a single CoM value is considered, are nearly the same. The Robust
constraints result in slower convergence, but always successfully transport the object.

5.10 Conclusion

We present a planning framework for nonprehensile object transportation that is robust to uncer-
tainty in the transported object’s inertial parameters. In particular, we explicitly model and design
robust constraints for uncertainty in the object’s CoM, and demonstrate successful transportation
of tall objects in simulation and on real hardware. We also demonstrate a novel use of moment
relaxations to develop conditions for the inertial parameters of the transported object to be physi-
cally realizable, which allows us to determine if the constraints would be violated for any possible
value of the inertial parameters, including the inertia matrix, along the planned trajectories.

Chapter 6

Conclusion

6.1 Summary

This thesis has described new methods for two nonprehensile manipulation tasks: planar pushing
and nonprehensile object manipulation. In Chapter 3, we develop the first controller for robotic
single-point pushing using only force feedback to sense the pushed object. We show that it
successfully pushes objects along both straight and curved paths with single-point contact and no
model of the object. We demonstrate the robustness of the controller by simulating pushes using
a wide variety of slider parameters and initial states. We also present real hardware experiments
in which a mobile manipulator successfully pushes different objects across a room along straight
and curved paths, including some with static obstacles. Notably, we do not assume that sufficient
friction is available to prevent slip at the contact point; slipping is a natural part of the behaviour
of our controller and does not necessarily lead to task failure.

In Chapter 4, we propose the first whole-body MPC for a mobile manipulator solving the
waiter’s problem. It is also the first approach to the waiter’s problem that handles dynamic obstacles.
Compared to existing MPC-based approaches to this problem, which have only been demonstrated
on fixed-base arms, our controller optimizes the joint-space trajectory online directly from task-
space objectives and constraints, without the use of a higher-level planning step. In addition, the
controller uses the minimum statically feasible friction coefficients, which provides robustness to
frictional uncertainty, vibration, and other real-world disturbances. When the minimum statically
feasible friction coefficients are zero, we show that the MPC problem can be solved more efficiently.
Furthermore, we present the first demonstrations of the waiter’s problem with a real velocity-
controlled mobile manipulator transporting up to seven objects; transporting an assembly of stacked
objects; and avoiding static and dynamics obstacles, including a thrown volleyball.

Finally, in Chapter 5 we develop a planner for nonprehensile object transportation that explicitly
handles objects with uncertain CoMs, extending the framework from Chapter 4. Furthermore, we
perform a theoretical analysis of the sticking constraint satisfaction in the presence of a bounded
CoM and any physically realizable inertia matrix, based on moment relaxations [20]. This is the
first time that moment relaxations have been used to characterize the set of physically realizable

81

CHAPTER 6. CONCLUSION 82

inertial parameters and the first time that this set of parameters has been used to analyze the worst-
case constraint satisfaction of a robotic trajectory. Finally, simulations and hardware experiments
demonstrating that our proposed robust constraints successfully transport the object—despite using
tall objects with high inertial parameter uncertainty—while baseline approaches drop the object.

6.2 Future Work

One open question in mobile manipulation research, and robotics more generally, is which robot
morphologies—that is, hardware configurations—are best for a given set of tasks. An attractive
choice of robot morphology is the humanoid, since a sufficiently capable humanoid robot could
conceivably handle any task that a real human can. On the other hand, humanoids have legs and
dexterous hands, but other morphologies with wheels or simpler end effectors may be cheaper yet
still highly effective for many tasks. As we have shown in this thesis, wheeled platforms with static
grippers in the form of a tray or a push point can certainly handle some tasks. Indeed, we may think
of different end effectors and even wheels as tools that an intelligent robot may choose to make use
of, much as humans do. Our task as roboticists is to investigate which tools are effective for which
tasks and to enable robots to use them (see e.g. [104] for some recent work in this direction).

Another open question is the role of machine learning for generating robot motion policies.
Machine learning has a clear place in many robotics perception pipelines given its widespread
success in visual object detection [105], but learned motion policies are not yet as mature. Common
approaches for policy learning are reinforcement learning (RL) and imitation learning (IL). RL tries
to maximize the cumulative reward obtained by interacting with the environment over time, which
requires a large amount of training data. While this data can be collected in simulation to reduce
costs compared to real-world data collection, the mismatch between simulation and reality may
limit the subsequent real-world performance [106]. In contrast, IL tries to learn a policy that imitates

provided expert demonstrations, which may be produced by a human or a different algorithm.
Recent IL approaches use generative models to produce a sequence of robot actions to accomplish
a desired task; for example, using diffusion models [107] or vision-language-action models [108].
While these methods have appealing generalization capabilities, we still need to understand the
fundamental mechanics of the tasks being solved in order to design reward functions, build expert
policies for automatic data collection, and to interpret the learned policies.

We discuss some specific ideas for extensions to the work presented in the thesis below, building
on the themes of morphology and machine learning, as well as some other directions.

6.2.1 Planar Pushing With Force Feedback

In Chapter 3, we demonstrated that a robot can perform stable single-point pushing along planar
paths using only force measurements to sense the pushed object. One direction for future work is
to improve the force-based policy using machine learning, which could be used to train a policy
that automatically exploits additional features of the environment. For example, a policy could

CHAPTER 6. CONCLUSION 83

learn to estimate the slider’s parameters over time or to make intelligent use of learned obstacle
positions. One option is to use IL to learn to replicate the performance of expert policies that make
use of additional sensor information, improving the policy in our force-based setting. Alternatively,
RL can be used to train a policy in simulation with dynamics randomization before being deployed
on real hardware.

Another direction for future work is to combine our forced-based pushing approach with other
sensor modalities, such as vision. One possibility is to combine the all of the different sensor
inputs in some way, possibly using them to estimate inertial, frictional, and geometric properties
of the object. Another approach is to automatically switch between a vision-based policy and a
force-based one depending on the conditions. For example, if the uncertainty in the visual pose
measurement becomes too high due to occlusions or poor lighting conditions, the controller can
switch to our proposed force-based controller until visual conditions improve.

6.2.2 Nonprehensile Object Transportation

In Chapters 4 and 5, we demonstrated our solution for the nonprehensile object transportation task
known as the waiter’s problem. Robustness to parameter uncertainty in general is particularly
important when solving the waiter’s problem with a mobile manipulator, because movement of
the mobile base causes vibration and noise at the EE. In Chapter 4, we introduced robustness by
planning with the minimum statically feasible friction coefficients; that is, the solver tries to only
rely on small friction forces, resulting in plans with a higher tolerance for frictional uncertainty.
In Chapter 5, we additionally consider uncertainty in the inertial parameters. Both approaches to
robustness rely on tightening constraints to produce robust motions.

Alternatively, we could change the robot’s morphology by changing the design of the EE itself.
In [75], the EE simulates the motion of a pendulum, which moves to minimize the required friction
forces on the transported objects. Instead, an actual physical tray could be suspended from the EE,
the dynamics of which naturally reduce the required friction forces. On the one hand, the contact
dynamics of the objects themselves could be neglected, enabling us to make fewer assumptions
about the objects’ shape, friction, and inertial parameters. However, the underactuated dynamics
of the three-dimensional pendulum would need to be included in the robot model, making the
trajectory optimization problem more challenging to solve.

Another alternative is to include feedback of the object poses themselves into the controller. In
our work, we enforce constraints such that the objects do not move with respect to the tray, and
assume this condition holds true. Instead, one could use a vision system to produce estimates of the
object poses online, which could then be fed back into the controller. The transported objects can
be modelled as inverted pendulums. With online feedback, the controller can potentially recover
once one of the objects starts to tip over. In addition, online feedback may also facilitate online
estimation of the frictional and inertial parameters of the objects, improving motion speed and
efficiency over time.

CHAPTER 6. CONCLUSION 84

6.3 Closing Remarks

Each component of this thesis has been at times challenging, frustrating, enlightening, and reward-
ing. This work has a strong focus on real hardware experiments and classical algorithms based on
optimization and Newtonian physics. For who is a roboticist without robots? Who is an engineer
without physics?

Our overall goal, as roboticists, should be to make the world better for people—all people, not
just a few. Robotics has the potential to transfer the burden of a vast amount of labour from humans
to machines, making more time for socialization, recreation, athletics, and creative pursuits. We
must not lose sight of this vision, nor forget to stop working ourselves once in a while.

Appendix A

Additional Results on Physically
Realizable Inertial Parameters

In Chapter 5 we described necessary conditions for a set of rigid body inertial parameters to
be physically realizable on a given shape K ⊂ R3 based on moment relaxations, which consist
of LMIs and can therefore be used as constraints in an SDP. However, there exist specialized
physical realizability conditions for particular shapes that are tighter or faster than the general
SDP conditions.

A.1 Existing Ellipsoid Condition

When K is an ellipsoid, there exists a simple necessary and sufficient condition for physical
realizability. Let K = {r ∈ R3 | (r − e)TA(r − e) ≤ 1} ⊂ R3 be an ellipsoid, where A ∈ S3++

defines the ellipsoid’s shape and e ∈ R3 is its center. We can equivalently express the ellipsoid
as K = {r ∈ R3 | r̃TQr̃ ≥ 0}, where

Q =

[
−A Ae

eTA 1− eTAe

]
∈ S4. (A.1)

Theorem 4 of [23], building on [109], tells us that the pseudo-inertia matrix Π ∈ S4++ is physically
realizable on K if and only if tr(QΠ) ≥ 0, which is a simple affine inequality. An equivalent result
was derived in [110].

A.2 Novel Box Conditions

It turns out that there also exist specialized physical realizability conditions for boxes (i.e., rectan-
gular prisms), which to the best of our knowledge have not been presented before in the literature.
Let K = {r ∈ R3 | −ε ≤ r ≤ ε} ⊂ R3 be an axis-aligned box centered at the origin, where ε =

[εx, εy, εz]
T is the vector of half extents. Define π(Π) ≜ [m,mcx,mcy,mcz, Sxy, Sxz, Syz]

T as a

85

APPENDIX A. ADDITIONAL RESULTS ON PHYSICALLY REALIZABLE INERTIAL PARAMETERS 86

subset of the inertial parameters represented by the pseudo-inertia matrix

Π =


Sxx Sxy Sxz mcx

Sxy Syy Syz mcy

Sxz Syz Szz mcz

mcx mcy mcz m

 ∈ S4++.

Then a necessary condition for Π to be physically realizable on K is that there exists µ ∈ R8
+ such

that Sxx

Syy

Szz

 ≤ m

ε
2
x

ε2y

ε2z

 , (A.2)

π(Π) =
8∑

i=1

µiπ(ṽiṽ
T
i), (A.3)

where vi ∈ R3, i = 1, . . . , 8, are the vertices of K. These conditions essentially say that we must
be able to exactly realize all of the elements of Π except for the diagonal of S using point masses µ
located at the vertices, while the diagonal of S must be bounded. Note that the requirement
that K is axis-aligned and centered at the origin is not limiting, because if K is not, we can simply
transform both it and Π to this pose using the homogeneous transformation matrix.

To prove this result, we need to show that any

Π =

∫
K
ρ(r)r̃r̃Tdr (A.4)

satisfies (A.2) and (A.3), where ρ : R3 → R+ is a mass density. The condition (A.2) follows
immediately from the fact that the mass cannot be located farther than the half extent along each
axis. The condition (A.3) claims that we can always exactly realize π(Π) just by placing mass at
the vertices of K. Let si = [six , siy , siz] = [(−1)⌊i/4⌋, (−1)⌊i/2⌋, (−1)i], where ⌊·⌋ rounds down to
the nearest integer. We can then write the vertices of K as vi = [sixεx, siyεy, sizεz]

T , i = 1, . . . , 8.
If we let φi(r) = (εx + sixrx)(εy + siyry)(εz + sizrz) for each i = 1, . . . , 8, then the system of
point masses located at the vertices with masses

µi = (1/V)

∫
K
ρ(r)φi(r)dr, i = 1, . . . , 8,

realizes the parameters π(Π), where V = 8εxεyεz is the volume of K. To see this, first observe
that φi(r) ≥ 0 for all r ∈ K since −ε ≤ r ≤ ε for all r ∈ K, and it follows that µi ≥ 0 for
all i = 1, . . . , 8. Next, define

ν(r) ≜ π(r̃r̃T)T , ν̃(r) ≜
[
ν(r)T rxryrz

]T
, D(r) ≜ diag(ν(r)).

APPENDIX A. ADDITIONAL RESULTS ON PHYSICALLY REALIZABLE INERTIAL PARAMETERS 87

From (A.4), we know that
π(Π) =

∫
K
ρ(r)ν(r) dr (A.5)

and we want to show that

π(Π) =
8∑

i=1

µiν(vi) =
8∑

i=1

µiD(ε)ν(si). (A.6)

We can write φi(p) = εxεyεzν̃(si)
T ν̃(r̂), where r̂ = [rx/εx, ry/εy, rz/εz]

T , which means

µi = (1/8)

∫
K
ρ(r)ν̃(si)

T ν̃(r̂) dr. (A.7)

Substituting (A.7) into the right-hand side (A.6), we get

8∑
i=1

µiD(ε)ν(si) = (1/8)
8∑

i=1

∫
K
ρ(r)ν̃(si)

T ν̃(r̂)D(ε)ν(si) dr

=

∫
K
ρ(r)D(ε)

(
(1/8)

8∑
i=1

ν(si)ν̃(si)
T

)
︸ ︷︷ ︸[

17 0
]

ν̃(r̂) dr

=

∫
K
ρ(r)D(ε)ν(r̂) dr

=

∫
K
ρ(r)ν(r) dr

which is equal to (A.5), as desired.
We have only shown that the conditions (A.2) and (A.3) are necessary for physically realizability;

it is still an open question if they are also sufficient. However, in practice they appear to be at least
as tight as the moment relaxation conditions from Chapter 5, while being much faster to enforce as
constraints in SDPs, as we will see next.

A.3 Faster Sticking Constraint Verification

In Chapter 5, we used moment relaxations to verify the worst-case sticking constraint violation
given uncertain inertial parameters by solving the SDP (5.10) for each i = 1, . . . , nh at each timestep
along a discretized trajectory. Since the shape K of the transported object is actually a box, we can

APPENDIX A. ADDITIONAL RESULTS ON PHYSICALLY REALIZABLE INERTIAL PARAMETERS 88

Table A.1: Comparison of physical realizability conditions for verifying trajectories from Section 5.8.

SDP Average solve
time [ms]

Maximum value
Center Top Robust

(5.10) 79 11.96 10.50 −0.56
(A.8) 13 11.96 10.50 −0.56
(A.9) 12 21.31 12.36 0.11

instead use our specialized box realizability conditions from the previous section, yielding the SDP

maximize
θ,µ

hT
i Y (ξ,η)θ

subject to Π(θ) ≽ 0,Sxx(θ)

Syy(θ)

Szz(θ)

 ≤ m(θ)

ε
2
x

ε2y

ε2z

 ,

π(θ) =
∑8

j=1 µjπ(ṽj ṽ
T
j),

c(θ) ∈ C,

(A.8)

where we have written all representations of the inertial parameters as functions of the parameter
vector θ, and we have relaxed the strict positive definiteness of Π to positive semidefiniteness.

Alternatively, suppose E = {r ∈ R3 | r̃TQr̃ ≥ 0} is the minimum-volume bounding ellipsoid
ofK, with Q as defined in (A.1). Then another SDP that provides an upper-bound on the worst-case
constraint violation is

maximize
θ

hT
i Y (ξ,η)θ

subject to Π(θ) ≽ 0,

tr(QΠ(θ)) ≥ 0,

c(θ) ∈ C,

(A.9)

where we have used the physical realizability conditions for ellipsoids described in Section A.1.
To compare the different SDPs (5.10), (A.8), and (A.9), we solved them at each timestep along

the discretized trajectories obtained using the Center, Top, and Robust constraint methods for
the simulated box with height 60 cm from Section 5.8. The results are shown in Table A.1. The
maximum constraint violations produced by the original SDP (5.10) using moment relaxations and
the proposed SDP (A.8) using our specialized constraints for boxes are the same (and of course
match those reported in Table 5.1). The SDP (A.8) is also considerably faster to solve: approximately
six times faster than (5.10). The SDP (A.9), which uses constraints corresponding to the bounding
ellipsoid, is similarly fast to solve, but the optimal values (i.e., the worst-case sticking constraint
violations) are much higher, because the ellipsoid is not a tight bounding shape for the true object’s
shape. Indeed, using the loose ellipsoid constraints would indicate that the Robust trajectory

APPENDIX A. ADDITIONAL RESULTS ON PHYSICALLY REALIZABLE INERTIAL PARAMETERS 89

may have constraint violations, while the other (tighter) constraints confirm that it does not. The
proposed specialized physical realizability conditions for boxes from Section A.2 therefore provide
both tight constraints and an efficient compute time compared to existing methods. Aside from
constraint verification, they could also be used for inertial parameter identification, similar to [23].

Bibliography

[1] A. Heins and A. P. Schoellig, “Force push: Robust single-point pushing with force feedback,”
IEEE Robotics and Automation Letters, vol. 9, no. 8, pp. 6856–6863, 2024.

[2] A. Heins and A. P. Schoellig, “Keep it upright: Model predictive control for nonprehensile
object transportation with obstacle avoidance on a mobile manipulator,” IEEE Robotics and

Automation Letters, vol. 8, no. 12, pp. 7986–7993, 2023.

[3] A. Heins and A. P. Schoellig, “Robust nonprehensile object transportation with uncertain
inertial parameters,” IEEE Robotics and Automation Letters, vol. 10, no. 5, pp. 4492–4499,
2025.

[4] A. Heins, M. Jakob, and A. P. Schoellig, “Mobile manipulation in unknown environments
with differential inverse kinematics control,” in Proc. Conf. Robots and Vision, 2021, pp. 64–71.

[5] M. K. Helwa, A. Heins, and A. P. Schoellig, “Provably robust learning-based approach
for high-accuracy tracking control of Lagrangian systems,” IEEE Robotics and Automation

Letters, vol. 4, no. 2, pp. 1587–1594, 2019.

[6] L. Takayama, W. Ju, and C. Nass, “Beyond dirty, dangerous and dull: What everyday people
think robots should do,” in Proc. ACM/IEEE Int. Conf. Human-Robot Interaction, 2008, pp. 25–
32.

[7] Oxford English Dictionary. Oxford University Press, 2023.

[8] A. L. Rosenberger, “Tale of tails: Parallelism and prehensility,” American J. Physical Anthro-

pology, vol. 60, no. 1, pp. 103–107, 1983.

[9] A. C. Noel and D. L. Hu, “The tongue as a gripper,” J. Experimental Biology, vol. 221, no. 7,
jeb176289, 2018.

[10] S. Chevalier-Skolnikoff and J. Liska, “Tool use by wild and captive elephants,” Animal

Behaviour, vol. 46, no. 2, pp. 209–219, 1993.

[11] K. M. Lynch, “Nonprehensile robotic manipulation: Controllability and planning,” Ph.D.
Carnegie Mellon University, 1996.

[12] F. Ruggiero, V. Lippiello, and B. Siciliano, “Nonprehensile dynamic manipulation: A survey,”
IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1711–1718, 2018.

90

BIBLIOGRAPHY 91

[13] M. T. Mason, “Mechanics and planning of manipulator pushing operations,” Int. J. Robotics
Research, vol. 5, no. 3, pp. 53–71, 1986.

[14] N. A. M. Hootsmans, “The motion control of manipulators on mobile vehicles,” Thesis,
Massachusetts Institute of Technology, 1992.

[15] S. Sivčev, J. Coleman, E. Omerdić, G. Dooly, and D. Toal, “Underwater manipulators: A
review,” Ocean Engineering, vol. 163, pp. 431–450, 2018.

[16] K. Kaneko, K. Harada, F. Kanehiro, G. Miyamori, and K. Akachi, “Humanoid robot HRP-3,”
in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2008, pp. 2471–2478.

[17] H. Ferrolho, V. Ivan, W. Merkt, I. Havoutis, and S. Vijayakumar, “Roloma: Robust loco-
manipulation for quadruped robots with arms,” Autonomous Robots, vol. 47, no. 8, pp. 1463–
1481, 2023.

[18] A. Ollero, M. Tognon, A. Suarez, D. Lee, and A. Franchi, “Past, present, and future of aerial
robotic manipulators,” IEEE Trans. Robotics, vol. 38, no. 1, pp. 626–645, 2022.

[19] E. Papadopoulos, F. Aghili, O. Ma, and R. Lampariello, “Robotic manipulation and capture
in space: A survey,” Frontiers in Robotics and AI, vol. 8, 2021.

[20] J. B. Lasserre, Moments, positive polynomials and their applications. World Scientific, 2009.

[21] R. Featherstone, Rigid Body Dynamics Algorithms. Springer, 2007.

[22] T. Yoshikawa, Foundations of Robotics—Analysis and Control. The MIT Press, 2003.

[23] P. M. Wensing, S. Kim, and J.-J. E. Slotine, “Linear matrix inequalities for physically con-
sistent inertial parameter identification: A statistical perspective on the mass distribution,”
IEEE Robotics and Automation Letters, vol. 3, no. 1, pp. 60–67, 2018.

[24] C. G. Atkeson, C. H. An, and J. M. Hollerbach, “Estimation of inertial parameters of manip-
ulator loads and links,” Int. J. Robotics Research, vol. 5, no. 3, pp. 101–119, 1986.

[25] M. Vukobratović and B. Borovac, “Zero-moment point—thirty five years of its life,” Int. J.
Humanoid Robotics, vol. 01, no. 01, pp. 157–173, 2004.

[26] S. Caron, Q.-C. Pham, and Y. Nakamura, “ZMP support areas for multicontact mobility
under frictional constraints,” IEEE Trans. on Robotics, vol. 33, no. 1, pp. 67–80, 2017.

[27] K. M. Lynch and F. C. Park, Modern Robotics: Mechanics, Planning, and Control. Cambridge
University Press, 2017.

[28] C. Zhou, M. Lei, L. Zhao, Z. Wang, and Y. Zheng, “TOPP-MPC-based dual-arm dynamic
collaborative manipulation for multi-object nonprehensile transportation,” in Proc. IEEE Int.

Conf. on Robotics and Automation, 2022, pp. 999–1005.

[29] S. Goyal, A. Ruina, and J. Papadopoulos, “Planar sliding with dry friction Part 1. Limit
surface and moment function,” Wear, vol. 143, no. 2, pp. 307–330, 1991.

BIBLIOGRAPHY 92

[30] K. M. Lynch, H. Maekawa, and K. Tanie, “Manipulation and active sensing by pushing
using tactile feedback,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 1992,
pp. 416–421.

[31] J. Zhou, R. Paolini, J. A. Bagnell, and M. T. Mason, “A convex polynomial force-motion
model for planar sliding: Identification and application,” in Proc. IEEE Int. Conf. Robotics and

Automation, 2016, pp. 372–377.

[32] S. Caron, Q. C. Pham, and Y. Nakamura, “Leveraging cone double description for multi-
contact stability of humanoids with applications to statics and dynamics,” in Proc. Robotics:

Science and Systems, 2015, isbn: 978-0-9923747-1-6.

[33] F. R. Hogan and A. Rodriguez, “Feedback control of the pusher-slider system: A story of
hybrid and underactuated contact dynamics,” in Proc. Workshop Algorithmic Foundations of

Robotics, 2020, pp. 800–815.

[34] J. Moura, T. Stouraitis, and S. Vijayakumar, “Non-prehensile planar manipulation via trajec-
tory optimization with complementarity constraints,” in Proc. IEEE Int. Conf. Robotics and

Automation, 2022, pp. 970–976.

[35] S. P. Boyd and B. Wegbreit, “Fast computation of optimal contact forces,” IEEE Trans. on

Robotics, vol. 23, no. 6, pp. 1117–1132, 2007.

[36] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2009.

[37] J. Nocedal and S. J. Wright, Numerical Optimization. Springer, 2006.

[38] A. Bambade, S. El-Kazdadi, A. Taylor, and J. Carpentier, “PROX-QP: yet another quadratic
programming solver for robotics and beyond,” in Proc. Robotics: Science and Systems, 2022,
isbn: 978-0-9923747-8-5.

[39] G. Frison and M. Diehl, “HPIPM: a high-performance quadratic programming framework
for model predictive control,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 6563–6569, 2020.

[40] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model Predictive Control: Theory, Computation,

and Design. 2017, vol. 2.

[41] P. E. Gill and E. Wong, “Sequential quadratic programming methods,” in Proc. Mixed Integer

Nonlinear Programming, 2012, pp. 147–224.

[42] M. Diehl, H. G. Bock, and J. P. Schlöder, “A real-time iteration scheme for nonlinear op-
timization in optimal feedback control,” SIAM J. Control and Optimization, vol. 43, no. 5,
pp. 1714–1736, 2005.

[43] MOSEK ApS, MOSEK documentation and API reference (version 10.2), 2024. [Online]. Avail-
able: https://www.mosek.com/documentation/.

[44] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling language for convex
optimization,” J. Machine Learning Research, vol. 17, no. 83, pp. 1–5, 2016.

https://www.mosek.com/documentation/

BIBLIOGRAPHY 93

[45] J. Stüber, C. Zito, and R. Stolkin, “Let’s push things forward: A survey on robot pushing,”
Frontiers in Robotics and AI, vol. 7, 2020.

[46] R. Emery and T. Balch, “Behavior-based control of a non-holonomic robot in pushing tasks,”
in Proc. IEEE Int. Conf. Robotics and Automation, 2001, pp. 2381–2388.

[47] T. Igarashi, Y. Kamiyama, and M. Inami, “A dipole field for object delivery by pushing on a
flat surface,” in Proc. IEEE Int. Conf. Robotics and Automation, 2010, pp. 5114–5119.

[48] Y. Okawa and K. Yokoyama, “Control of a mobile robot for the push-a-box operation,” in
Proc. IEEE Int. Conf. Robotics and Automation, 1992, pp. 761–766.

[49] K. M. Lynch and M. T. Mason, “Stable pushing: Mechanics, controllability, and planning,”
Int. J. Robotics Research, vol. 15, no. 6, pp. 533–556, 1996.

[50] S. Akella and M. T. Mason, “Posing polygonal objects in the plane by pushing,” Int. J. Robotics
Research, vol. 17, no. 1, pp. 70–88, 1998.

[51] S. Rusaw, K. Gupta, and S. Payandeh, “Part orienting with a force/torque sensor,” in Proc.

IEEE Int. Conf. Robotics and Automation, 1999, pp. 2545–2550.

[52] S. Akella, W. H. Huang, K. M. Lynch, and M. T. Mason, “Parts feeding on a conveyor with a
one joint robot,” Algorithmica, vol. 26, no. 3, pp. 313–344, 2000.

[53] F. Ruiz-Ugalde, G. Cheng, and M. Beetz, “Fast adaptation for effect-aware pushing,” in Proc.

IEEE-RAS Int. Conf. Humanoid Robots, 2011, pp. 614–621.

[54] D. Nieuwenhuisen, A. van der Stappen, and M. Overmars, “Path planning for pushing a
disk using compliance,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2005,
pp. 714–720.

[55] M. Bauza and A. Rodriguez, “A probabilistic data-driven model for planar pushing,” in Proc.

IEEE Int. Conf. Robotics and Automation, 2017, pp. 3008–3015.

[56] J. Li, W. S. Lee, and D. Hsu, “Push-net: Deep planar pushing for objects with unknown
physical properties,” in Proc. Robotics: Science and Systems, 2018.

[57] A. Kloss, S. Schaal, and J. Bohg, “Combining learned and analytical models for predicting
action effects from sensory data,” Int. J. Robotics Research, vol. 41, no. 8, pp. 778–797, 2022.

[58] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-real transfer of robotic
control with dynamics randomization,” in Proc. IEEE Int. Conf. Robotics and Automation,
2018, pp. 3803–3810.

[59] J. D. A. Ferrandis, J. Moura, and S. Vijayakumar, “Nonprehensile planar manipulation
through reinforcement learning with multimodal categorical exploration,” in Proc. IEEE/RSJ

Int. Conf. Intelligent Robots and Systems, 2023, pp. 5606–5613.

[60] M. Bauza, F. R. Hogan, and A. Rodriguez, “A data-efficient approach to precise and controlled
pushing,” in Proc. Conf. Robot Learning, 2018, pp. 336–345.

BIBLIOGRAPHY 94

[61] W. C. Agboh and M. R. Dogar, “Pushing fast and slow: Task-adaptive planning for non-
prehensile manipulation under uncertainty,” in Proc. Workshop Algorithmic Foundations of

Robotics, 2020, pp. 160–176.

[62] F. Bertoncelli, F. Ruggiero, and L. Sabattini, “Linear time-varying MPC for nonprehensile
object manipulation with a nonholonomic mobile robot,” in Proc. IEEE Int. Conf. Robotics

and Automation, 2020, pp. 11 032–11 038.

[63] Y. Tang, H. Zhu, S. Potters, M. Wisse, and W. Pan, “Unwieldy object delivery with nonholo-
nomic mobile base: A stable pushing approach,” IEEE Robotics and Automation Letters, vol. 8,
no. 11, pp. 7727–7734, 2023.

[64] A. Rigo, Y. Chen, S. K. Gupta, and Q. Nguyen, “Contact optimization for non-prehensile
loco-manipulation via hierarchical model predictive control,” in Proc. IEEE Int. Conf. Robotics

and Automation, 2023, pp. 9945–9951.

[65] M. Sombolestan and Q. Nguyen, “Hierarchical adaptive loco-manipulation control for
quadruped robots,” in Proc. IEEE Int. Conf. Robotics and Automation, 2023, pp. 12 156–12 162.

[66] F. G. Flores and A. Kecskeméthy, “Time-optimal path planning for the general waiter motion
problem,” in Advances in Mechanisms, Robotics and Design Education and Research, 2013,
pp. 189–203.

[67] B. A. Maxwell et al., “Alfred: The robot waiter who remembers you,” in Proc. AAAI Workshop

on Robotics, 1999, pp. 1–12.

[68] A. Cheong, M. Lau, E. Foo, J. Hedley, and J. W. Bo, “Development of a robotic waiter system,”
IFAC-PapersOnLine, vol. 49, no. 21, pp. 681–686, 2016.

[69] A. Y. S. Wan, Y. D. Soong, E. Foo, W. L. E. Wong, and W. S. M. Lau, “Waiter robots conveying
drinks,” Technologies, vol. 8, no. 3, p. 44, 2020.

[70] B. Sprenger, L. Kucera, and S. Mourad, “Balancing of an inverted pendulum with a SCARA
robot,” IEEE/ASME Trans. Mechatronics, vol. 3, no. 2, pp. 91–97, 1998.

[71] T. A. Permadi, J. Halomoan, and S. Hadiyoso, “Balancing system of tray on waiter robot using
complementary filter and fuzzy logic,” in Proc. Int. Conf. Industrial Automation, Information

and Communications Technology, 2014, pp. 15–21.

[72] J. M. Garcia-Haro, S. Martinez, and C. Balaguer, “Balance computation of objects transported
on a tray by a humanoid robot based on 3D dynamic slopes,” in Proc. IEEE-RAS Int. Conf.

Humanoid Robots, 2018, pp. 1–6.

[73] A. Dang and I. Ebert-Uphoff, “Active acceleration compensation for transport vehicles
carrying delicate objects,” IEEE Trans. on Robotics, vol. 20, no. 5, pp. 830–839, 2004.

[74] L. Moriello, L. Biagiotti, C. Melchiorri, and A. Paoli, “Manipulating liquids with robots: A
sloshing-free solution,” Control Engineering Practice, vol. 78, pp. 129–141, 2018.

BIBLIOGRAPHY 95

[75] R. I. C. Muchacho, R. Laha, L. F. C. Figueredo, and S. Haddadin, “A solution to slosh-free
robot trajectory optimization,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems,
2022, pp. 223–230.

[76] J. Ichnowski, Y. Avigal, Y. Liu, and K. Goldberg, “GOMP-FIT: grasp-optimized motion
planning for fast inertial transport,” in Proc. IEEE Int. Conf. Robotics and Automation, 2022,
pp. 5255–5261.

[77] G. Csorvási, Á. Nagy, and I. Vajk, “Near time-optimal path tracking method for waiter
motion problem,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 4929–4934, 2017.

[78] J. Luo and K. Hauser, “Robust trajectory optimization under frictional contact with iterative
learning,” Autonomous Robots, vol. 41, no. 6, pp. 1447–1461, 2017.

[79] Q.-C. Pham, S. Caron, P. Lertkultanon, and Y. Nakamura, “Admissible velocity propagation:
Beyond quasi-static path planning for high-dimensional robots,” Int. J. Robotics Research,
vol. 36, no. 1, pp. 44–67, 2017.

[80] M. Selvaggio, J. Cacace, C. Pacchierotti, F. Ruggiero, and P. R. Giordano, “A shared-control
teleoperation architecture for nonprehensile object transportation,” IEEE Trans. on Robotics,
vol. 38, no. 1, pp. 569–583, 2022.

[81] R. Subburaman, M. Selvaggio, and F. Ruggiero, “A non-prehensile object transportation
framework with adaptive tilting based on quadratic programming,” IEEE Robotics and

Automation Letters, vol. 8, no. 6, pp. 3581–3588, 2023.

[82] V. Morlando, M. Selvaggio, and F. Ruggiero, “Nonprehensile object transportation with a
legged manipulator,” in Proc. IEEE Int. Conf. on Robotics and Automation, 2022, pp. 6628–6634.

[83] J. M. Garcia-Haro, “Object oriented control system in humanoid robots for transport tasks,”
Ph.D. Universidad Carlos III de Madrid, 2019.

[84] M. Selvaggio, A. Garg, F. Ruggiero, G. Oriolo, and B. Siciliano, “Non-prehensile object
transportation via model predictive non-sliding manipulation control,” IEEE Trans. Control

Systems Technology, vol. 31, no. 5, pp. 2231–2244, 2023.

[85] D. Kraft, “A software package for sequential quadratic programming,” DLR German Aerospace
Center – Institute for Flight Mechanics, Tech. Rep. DFVLR-FB 88-28, 1988.

[86] P. Virtanen, R. Gommers, M. T. E., et al., “Scipy 1.0: Fundamental algorithms for scientific
computing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020.

[87] OCS2: An open source library for optimal control of switched systems. [Online]. Available:
https://github.com/leggedrobotics/ocs2.

[88] B. M. Bell, CppAD: A package for C++ algorithmic differentiation (20190200), 2019. [Online].
Available: http://www.coin-or.org/CppAD.

https://github.com/leggedrobotics/ocs2
http://www.coin-or.org/CppAD

BIBLIOGRAPHY 96

[89] G. Frison, H. H. B. Sørensen, B. Dammann, and J. B. Jørgensen, “High-performance small-
scale solvers for linear model predictive control,” in Proc. European Control Conf., 2014,
pp. 128–133.

[90] C. V. Rao, S. J. Wright, and J. B. Rawlings, “Application of interior-point methods to model
predictive control,” J. Optimization Theory and Applications, vol. 99, no. 3, pp. 723–757, 1998.

[91] T. Barfoot, State Estimation for Robotics. Cambridge University Press, 2017.

[92] K. Dong, K. Pereida, F. Shkurti, and A. P. Schoellig, “Catch the ball: Accurate high-speed
motions for mobile manipulators via inverse dynamics learning,” in Proc. IEEE/RSJ Int. Conf.

Intelligent Robots and Systems, 2020, pp. 6718–6725.

[93] K. Zhang, Z. Cao, J. Liu, Z. Fang, and M. Tan, “Real-time visual measurement with opponent
hitting behavior for table tennis robot,” IEEE Trans. Instrumentation andMeasurement, vol. 67,
no. 4, pp. 811–820, 2018.

[94] S. Traversaro, S. Brossette, A. Escande, and F. Nori, “Identification of fully physical consistent
inertial parameters using optimization on manifolds,” in Proc. IEEE/RSJ Int. Conf. Intelligent

Robots and Systems, 2016, pp. 5446–5451.

[95] H. Gattringer, A. Müller, S. Weitzhofer, and M. Schörgenhumer, “Point to point time optimal
handling of unmounted rigid objects and liquid-filled containers,” Mechanism and Machine

Theory, vol. 184, p. 105 286, 2023.

[96] Z. Brei, J. Michaux, B. Zhang, P. Holmes, and R. Vasudevan, “Serving time: Real-time, safe
motion planning and control for manipulation of unsecured objects,” IEEE Robotics and

Automation Letters, vol. 9, no. 3, pp. 2383–2390, 2024.

[97] S. Caron and A. Kheddar, “Multi-contact walking pattern generation based on model
preview control of 3D COM accelerations,” in Proc. IEEE-RAS Int. Conf. Humanoid Robots,
2016, pp. 550–557.

[98] N. Giftsun, A. D. Prete, and F. Lamiraux, “Robustness to inertial parameter errors for legged
robots balancing on level ground,” in Proc. Int. Conf. Informatics in Control, Automation and

Robotics, 2017.

[99] X. Jiang, W. Chi, Y. Zheng, et al., “Locomotion generation for quadruped robots on chal-
lenging terrains via quadratic programming,” Autonomous Robots, vol. 47, no. 1, pp. 51–76,
2023.

[100] H. Yang and L. Carlone, “Certifiably optimal outlier-robust geometric perception: Semidefi-
nite relaxations and scalable global optimization,” IEEE Trans. Pattern Analysis and Machine

Intelligence, vol. 45, no. 3, pp. 2816–2834, 2023.

[101] S. Kang, X. Xu, J. Sarva, L. Liang, and H. Yang, “Fast and certifiable trajectory optimization,”
in Proc. Workshop Algorithmic Foundations of Robotics, 2024.

[102] D. J. Balkcom and J. C. Trinkle, “Computing wrench cones for planar rigid body contact
tasks,” Int. J. Robotics Research, vol. 21, no. 12, pp. 1053–1066, 2002.

BIBLIOGRAPHY 97

[103] K. Fukuda and A. Prodon, “Double description method revisited,” in Proc. Combinatorics

and Computer Science, 1996, pp. 91–111.

[104] L. Wang, J. Zhao, Y. Du, E. Adelson, and R. Tedrake, “PoCo: Policy composition from and
for heterogeneous robot learning,” in Proc. Robotics: Science and Systems, 2024.

[105] Z. Zou, K. Chen, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20 years: A survey,” Proc.
IEEE, vol. 111, no. 3, pp. 257–276, 2023.

[106] S. Höfer, K. Bekris, A. Handa, et al., “Sim2real in robotics and automation: Applications
and challenges,” IEEE Trans. Automation Science and Engineering, vol. 18, no. 2, pp. 398–400,
2021.

[107] C. Chi, Z. Xu, S. Feng, et al., “Diffusion policy: Visuomotor policy learning via action
diffusion,” Int. J. Robotics Research, 2024.

[108] K. Black, N. Brown, D. Driess, et al., π0: a vision-language-action flow model for general robot

control, arXiv: 2410.24164 [cs.LG], 2024.

[109] L. Fialkow and J. Nie, “Positivity of Riesz functionals and solutions of quadratic and quartic
moment problems,” J. Functional Analysis, vol. 258, no. 1, pp. 328–356, 2010.

[110] G. M. Rozenblat, “On the choice of physically realizable parameters when studying the
dynamics of spherical and ellipsoidal rigid bodies,” Mechanics of Solids, vol. 51, no. 4, pp. 415–
423, 2016.

	Introduction
	Motivation
	Outline
	Novel Contributions
	Publications

	Background
	Rigid Bodies
	Geometry and Kinematics
	The Newton-Euler Equations
	Inertial Parameters
	Zero-Moment Point

	Robotic Manipulation
	Geometry and Kinematics
	Friction and the Contact Wrench Cone
	Prehensile and Nonprehensile Manipulation

	Optimization
	Quadratic Programming
	Optimal Control
	Semidefinite Programming

	Experimental Platform

	Robotic Pushing With Force Feedback
	Introduction
	Related Work
	Problem Statement
	Task-Space Pushing Controller
	Stable Pushing and Path-Tracking
	Contact Recovery
	Obstacle Avoidance and Admittance Control
	Force Filtering

	Inverse Kinematics Controller
	Simulation Experiments
	Hardware Experiments
	Conclusion

	Model Predictive Control for Nonprehensile Object Transportation
	Introduction
	Related Work
	System Model
	Robot Model
	Object Model

	Sticking Constraints
	Robust Sticking Constraints
	Constrained Model Predictive Controller
	Soft Constraints
	Low-level Joint Controller
	State Estimation

	Simulation Experiments
	Sticking Constraint Comparison
	Non-Parallel Support Planes

	Hardware Experiments
	Static Environments
	Dynamic Environments
	Comparison with Aligned Approach

	Conclusion

	Nonprehensile Object Transportation with Uncertain Inertial Parameters
	Introduction
	Related Work
	Background
	Polyhedron Double Description
	Moment Relaxations

	Modelling
	Robot Model
	Object Model

	Sticking Constraints with Uncertain Inertial Parameters
	Contact Force Constraints
	Robustness to Inertial Parameter Uncertainty

	Robust Planning
	Verifying Sticking Constraint Satisfaction
	Double Description of the Contact Wrench Cone
	Physically Realizable Inertial Parameters
	Worst-Case Sticking Constraints

	Simulation Experiments
	Hardware Experiments
	Conclusion

	Conclusion
	Summary
	Future Work
	Planar Pushing With Force Feedback
	Nonprehensile Object Transportation

	Closing Remarks

	Additional Results on Physically Realizable Inertial Parameters
	Existing Ellipsoid Condition
	Novel Box Conditions
	Faster Sticking Constraint Verification

	Bibliography

