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Abstract—This paper describes a method for performing 

automated lip reading. There are many existing solutions to 

automated lip reading that involve deep learning approaches, 

with the most recent being the LipNet project [1] by the 

University of Oxford and Google DeepMind. LipNet is also the 

most accurate (95.2%) work that uses the publicly available 

GRID corpus dataset [2]. All of the existing solutions create their 

input by extracting faces, or portions thereof, from the still 

frames of videos of people speaking words. In this work, a 

different feature extraction approach was used. Instead of 

features from video frames themselves being used as input, the 

difference (delta) between the features of neighboring frames was 

used. Using the delta between features captures the movement 

information of the speaker, which is directly related to the words 

being spoken. Features were extracted from each video frame 

using a pre-trained convolutional neural network model, VGG-

Face [3]. Neighboring features were then subtracted from each 

other and normalized to generate delta features. The delta 

features were used as input to an LSTM network, the output of 

which was the predicted word embedding. The network was 

evaluated on the GRID corpus dataset with an average accuracy 

of 86.30% for speaker-dependent tests and 57.83% for speaker-

independent tests. The use of delta features improved both 

accuracy and training time in both cases. 

Keywords—lip reading; long short-term memory; convolutional 

neural networks; delta features 

I. INTRODUCTION 

Lip reading refers to the task of determining the words 

spoken by a person based only on visual input of the speaker’s 

mouth with no accompanying audio data. Humans generally 

display a poor ability to lip read, with correct identification of 

compound words occurring only 21 ± 11% of the time [1]. 

Potential applications of automated lip reading include silent 

dictation in public places, speech recognition in noisy 

environments, and the captioning of silent films and videos 

[1]. It would thus be beneficial to automate the task of lip 

reading. 

Automatic lip-reading generally consists of two stages, 

feature extraction and classification. Feature extraction often 

involves identifying and extracting the region around the 

speaker’s mouth, as in [1] and [4]. In contrast, this work 

describes a method in which features are extracted from the 

entire face, rather than just the mouth region. This method 

preserves visual cues that may be present in other facial 

regions. Delta features are the differences between the features 

of adjacent frames. Facial features that do not contribute 

information to lip reading are automatically eliminated when 

the input to the classifier consists of delta features, because the 

delta of a feature that does not change is zero. 

This work is focused on comparing the accuracy and 

training speed of classification with and without delta features. 

The model was evaluated in two ways. First, the model was 

tested in a speaker-dependent manner, in which testing and 

training was done on a single speaker at a time. Second, the 

model was tested in a speaker-independent manner. It was 

trained on a large set of speakers and tested using a 

completely separate speaker that was held out from the 

training set. 

The paper is organized into the following sections. Section 

II discusses background and related research on automated lip-

reading. Section III provides detail about the dataset used to 

test and train the model. Section IV describes the experimental 

methodology. Sections V and VI present the results of the 

work and related discussion. Sections VII and VIII discuss 

conclusions and future topics of research. Finally, a sample of 

the source code used for this work is presented in Appendix A. 

II. BACKGROUND REVIEW 

Research on automated systems for reading lips has 

received interest for many years, beginning with the PhD 

thesis of B. Petajan [5]. Petajan’s work proposed using lip-

reading to augment existing audio recognition systems, but 

more recent work has eliminated audio input entirely. 

Common methods for automated lip-reading include Hidden 

Markov Models (HMMs) and Support Vector Machines 

(SVMs). One of the first visual-only lip reading systems was 

done using HMMs using visemes and trisemes, but only on a 

limited dataset [6]. Gergen et al. in [7] used a larger dataset 

(GRID corpus) and developed a HMM/GMM system where 

mouth regions of images are trained on an LDA-transformed 

version of the Discrete Cosine Transform. This approach 

resulted in accuracy of 86.4%. However, it was only trained at 

the word-level, meaning only one word at a time was 



analyzed. In [8], optical flow was used for feature extraction 

which were then trained using SVM. 

Recently, techniques have been developed using artificial 

neural networks such as recurrent neural networks (RNNs) 

and convolutional neural networks (CNNs). A recent 

collaboration between University of Oxford and Google 

DeepMind, known as LipNet, used a model that was trained at 

the sentence-level rather than the word-level. On the GRID 

corpus, LipNet achieved the highest state-of-the-art sentence-

level accuracy to date, 95.2% [1]. LipNet has three main 

building blocks. First, spatiotemporal convolutional neural 

networks (STCNNs) are used to process the mouth region of 

video frames. The extracted feature data is then sent to Gated 

Recurrent Units (GRUs), which are a type of RNN with 

similarities to Long-Short Term Memory (LSTM) networks. 

The output from the GRUs is processed by a linear 

transformation and a softmax function. As with many LSTM 

models, this model was also trained with Connectionist 

Temporal Classification (CTC) [1]. 

III. THE GRID DATA CORPUS 

The GRID Corpus1 dataset was used because it contains 

videos of full sentences being spoken, allowing for the 

possibility of sentence-level classifications in future work. The 

dataset is publicly available and contains video recordings of 

1000 sentences spoken by 34 speakers. Each sentence consists 

of exactly six words, resulting in a sample size of 60,000 

words per speaker. Leaving out Speaker 21, the videos of 

whom are missing, the dataset contains a total of 1,980,000 

spoken words [2]. Each sentence follows the consistent 

structure of: 

command → color → preposition → letter → digit → adverb 

The vocabulary consists of a total of 51 words [2], which 

are identified in Table I. The letter W was excluded due to the 

fact that it takes much longer to say than all other letters [2]. 

The number of occurrences of each word in a speaker’s 

dataset is not equal due to the fixed sentence format. Letters 

appear the least frequently, followed by numbers, and finally 

all other words. 

 

 

 

 

 

 

 

 

                                                           
1 Publicly available at http://spandh.dcs.shef.ac.uk/gridcorpus/. 

TABLE I.   
DESCRIPTION OF VOCABULARY USED BY THE SPEAKERS IN THE GRID CORPUS. 

THE NUMBER OF OCCURRENCES FOR EACH WORD OF A GIVEN TYPE, PER 

SPEAKER, IS ALSO SHOWN. 

Word Type Words 
Number of 
Occurrences per 
Word 

Command bin, lay, place, set 248 - 256 

Colour blue, green, red, white 248 – 256 

Preposition at, by, in, with 248 – 256 

Letter A-Z, excluding W 40 

Digit 0-9 100 

Adverb again, now, please, soon 248 - 256 

 

It should be noted that the sentences do not follow English 

language grammar. An example sentence is “Lay blue at A 

seven please”. Each video has a fixed length of 3 seconds and 

frame rate of 25 frames per second, giving a fixed length of 75 

frames. Each video also comes with an “alignment” file that 

records the interval of frames over which each word is spoken 

[2]. 

IV. EXPERIMENTAL METHODOLOGY 

A. Feature Extraction and Pre-processing 

Facial features were extracted from the raw video frames 

using a convolutional neural network (CNN). Due to the fact 

that it is impractical to train a CNN from scratch due to time 

and data limitations, the pre-trained “VGG-Face”2 CNN by 

the Visual Geometry Group from University of Oxford was 

used instead. VGG-Face was based on the University of 

Oxford’s VGG-16 architecture, which contains a sequence of 

convolution, pooling and fully connected layers. VGG-Face 

was trained with 2,622 identities for a total of 2.5 million face 

images [3]. Figure 1 shows the architecture of VGG-Face. 

Using a pre-trained model with a large dataset like that of 

VGG-Face provided high quality features for transfer learning. 

The VGG-Face model takes in individual images as input and 

outputs a flattened feature vector of length 512. Feature 

vectors were extracted by taking the output of the model 

(without the fully connected layers). The feature vectors of 

each video were then grouped per word and saved to an output 

binary file which could be loaded for training at any time. The 

feature extraction process was done separately from the 

training of the model due to the fact that feature extraction 

was the step that took the largest amount of time. 

                                                           
2 Source code available at https://github.com/rcmalli/keras-vggface. Based on 

http://www.robots.ox.ac.uk/~vgg/software/vgg_face/. 



 

Fig. 1. Architecture of the VGG-Face CNN used for facial feature identification in each video frame. 

 

Prior to training, the feature vectors were loaded from the 

binary files and preprocessed. First, the number of feature 

vectors for each word were truncated or extended so that each 

word had the same number of frames. It was decided that six 

frames should be used because, on average, six frames was 

enough to cover many of the shortest words in the dataset 

(such as the letters), and increasing the number did not show 

any increase in accuracy [4]. Words that had too few frames 

were padded with repetitions of the features of the last frame. 

Words with more than six frames were condensed by 

averaging the features of neighboring frames. Next, deltas of 

the feature vectors for each word were generated by 

subtracting neighboring feature vectors. Finally, the feature 

deltas were normalized and split into separate training and 

testing datasets for cross validation. 

For output, each word is converted into a numerical vector 

using one-hot encoding where the length of the vector is equal 

to the size of the vocabulary. Word embedding techniques 

such as Word2vec were considered [9], but because the 

vocabulary size of GRID corpus is only 51 words, one-hot 

encoding is more efficient. Word2vec would be more efficient 

if the vocabulary size was a lot larger (i.e. greater than 200 

words). 

B. Classification 

Classification was done using a similar architecture to [4], 

constructed with the Keras 3  framework. The model was a 

RNN. The first two layers were LSTMs with a size of 128 

nodes each. LSTMs address the issue of vanishing and 

exploding gradients in traditional RNNs, as LSTM blocks are 

able to store representations of inputs for much larger time 

steps [10]. The final layer was a fully connected layer using 

tanh as the activation function. The network used mean 

squared error (MSE) as the loss function and Adam [11] as the 

optimizer. 

The output of the network was a vector of length 51, 

representing the probability that the input matched each of the 

51 possible words in the vocabulary. Figure 2 illustrates the 

prediction process for one word. 

                                                           
3 Documentation can be found at https://keras.io. 

C. Validation 

The model was tested in two ways. The first way was to 

train and test on only a single speaker’s dataset at once, 

referred to as speaker-dependent testing. The model was tested 

using k-fold cross-validation with k=5. The results for each 

speaker used were then averaged to calculate the final 

accuracy of the model. 

The second way in which the model was tested was to 

train on multiple speakers and then test on a completely 

different speaker that was not part of the training set, referred 

to as speaker-independent testing. Twenty-five speakers from 

the data set were used for this task, for a total of 150,000 

spoken words. During each test, 24 speakers were used for 

training, and the remaining speaker was used for testing.  

In both scenarios, the model was trained and tested 

separately with normal features and delta features, so that the 

impact of using delta features could be examined. 

V. RESULTS 

The first set of tests evaluated the performance of the 

model when trained and tested speaker-dependently. Speakers 

1-5 from the dataset were used. The accuracies for each 

speaker were averaged to arrive at a final overall accuracy. 

The optimal number of training epochs was also recorded. The 

results are summarized in Table II. 

TABLE II.   
RESULTS FOR SPEAKER-DEPENDENT MODEL WITH AND WITHOUT DELTA 

FEATURES. RESULTS WERE AVERAGED OVER SPEAKERS 1 - 5. 

 With Delta Features 
Without Delta 

Features 

Mean Accuracy 86.30% 84.66% 

Accuracy Std. 
Dev. 

3.02% 2.06% 

Optimal Training 
Epochs 

29 74 

 

 

 

 



 

Fig. 2. End-to-end architecture used to classify a set of video frames as a spoken word, with example output. 

Speaker-independent tests were also performed, in which 

the model was trained on all speakers except one, whose data 

was used for the test set. Twenty-five speakers (Speakers 1 - 

15, 17, 18, 27 - 34) were used for this task. Three tests were 

done, in which Speaker 1, 2, and 3 were held out for testing, 

respectively. Testing was done both with and without delta 

features. The results for each test were averaged and are 

summarized in Table III. 

TABLE III.   
RESULTS FOR SPEAKER-INDEPENDENT TESTS IN WHICH A DATA SET OF 25 

SPEAKERS WAS USED, AND A SINGLE SPEAKER WAS HELD OUT FOR TESTING AT 

A TIME. THIS WAS REPEATED FOR SPEAKER 1, 2, AND 3 BOTH WITH AND 

WITHOUT DELTA FEATURES. 

 With Delta Features 
Without Delta 

Features 

Mean Accuracy 57.83% 40.05% 

Accuracy Std. 
Dev. 

5.01% 5.37% 

Optimal Training 
Epochs 

6 11 

 

VI. DISCUSSION 

In the speaker-dependent tests, the usage of delta features 

provided a slight accuracy increase of 1.63%. Notably, 

training to this level of accuracy without delta features 

required over 2.5 times more training epochs, considerably 

increased the training time required. One of the possible 

reasons for this result is that the speaker’s facial movement is 

the most relevant data for predicting the words spoken. Delta 

features already emphasize movement, since they are the 

difference between the features of neighboring video frames. 

This provides a “shortcut” for the network, such that the 

model doesn’t have to learn to isolate the movement itself and 

thus training time is reduced considerably. 

The accuracy of 86.30% achieved using delta features is 

comparable to the best accuracy achieved by word-level 

classification, 86.4% [7]. However, it falls short of the state-

of-the-art sentence-level classification performed by [1], 

which achieved an accuracy of 95.2%. 

The speaker-independent tests resulted in a considerable 

difference in accuracy when delta features were used. The 

usage of delta features improved accuracy by 17.78%. Like 

the speaker-dependent tests, more epochs were required to 

train without delta features. In this case, training without delta 

features required 1.8 times as many training epochs. 

The large increase in accuracy when delta features were 

used suggests that the movement a person makes when saying 

a word, captured by delta features, is more generalizable than 

the actual sequence of facial features. In other words, the 

movements people make when saying a given word are more 

generalizable than the overall appearance of people when 

saying the word. Thus, a model trained with delta features was 

more accurate when applied to as-yet-unseen speakers for 

testing. 

The architecture used in this model is not competitive with 

the current state-of-the-art sentence-level classifier [1], which 

achieves an accuracy of 88.6% when used for a speaker-

independent test. However, it is considered likely that 

including the remaining speakers in the GRID dataset would 

improve accuracy further. 

VII. CONCLUSION 

The use of delta features in preprocessing shows benefits 

in both accuracy and training time for both speaker-dependent 

and speaker-independent tests. In speaker-dependent tests, the 

use of delta features increased the accuracy of the model by 

1.63% and reduced training time by a factor of 2.5. Further, in 

speaker-independent tests, the use of delta features increased 

accuracy by 17.78% and reduced training time by a factor of 

1.8. 

The accuracy of the model was below the state-of-the-art 

for both the speaker-dependent and speaker-independent tests; 

however, the concept of delta features is independent of the 

model and could be used as a preprocessing step in other work 

to improve results. The concept of delta features can be 

extended to the delta between raw image inputs, as well as 

other input types. It is recommended that the use of delta 

features be investigated in any work where change in features, 

or movement, is considered to be important for classification. 



VIII.  FUTURE WORK 

The VGG-Face model was trained for faces and not just 

the mouth region [3]. As such, some of the features of the face 

might not have provided useful context for the LSTM network 

and could have reduced the accuracy of the model. The VGG-

Face model could potentially be more effective if output from 

a different layer, that had a higher emphasis on the mouth 

region, were used instead.  

In order to determine which layer would be best for lip 

recognition, one could prepare two sets of the same input face 

images, but one set has the mouth removed (setting the value 

of the mouth region pixels to zero). The two inputs could then 

be passed through the VGG-Face network, generating two sets 

of feature vectors for each layer (with and without the mouth). 

For each layer, a distance metric could be used to evaluate the 

features with the mouth against the features without the 

mouth. The layer that recognizes the mouth most effectively 

would be the layer that yields the highest distance metric 

between its two sets of feature vectors. Some possible distance 

metrics include the average Euclidean distance between each 

set of corresponding feature vectors or the variance of the 

feature vectors for each layer. One could also visualize the 

difference between the sets of feature vectors by creating a t-

SNE visualization, such that the distance could be visualized 

on a two-dimensional plane [12]. 

Aside from determining the best layer of the VGG-Face 

model to use, a CNN trained just to classify the mouth region 

could provide improvements. Such a model would provide 

feature data on the part of the face that offers the most context 

for lip reading. However, similar to the VGG-Face project, a 

very large dataset and considerable computational resources 

would be required to train such a model [3]. 

A further improvement to the work would be to 

incorporate sentence-level classification, as in [1]. This would 

allow the model to learn about the speakers’ transitions 

between words, in addition to each word individually. The 

additional context of sentence-level classification would 

provide robustness against differences between the accents of 

speakers that may slur words together in different ways. 

Sentence-level classification can be done with temporal 

classifiers, such as the CTC used in [1], which represents the 

outputs as a probability distribution over all of the possible 

labeled sentences. CTC also eliminates both the need to pre-

segment video frames into sets representing individual words, 

and the need to post-process network outputs (words) into 

labeled sentences [13]. Using CTC would greatly decrease the 

complexity of pre-processing in this work. 
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APPENDIX A: SAMPLE SOURCE CODE 

All source code4 was written in Python. The following code is an excerpt from the script used to load and preprocess data. 

# Data parameters. 

K = 5 

SPEAKERS = [1] 

SHUFFLE = True 

USE_DELTA_FRAMES = True 

 

# Model parameters. 

EPOCHS = 50 

BATCH_SIZE = 32 

ACTIVATION = 'tanh' 

LOSS = 'mean_squared_error' 

OPTIMIZER = 'adam' 

 

VERBOSE = True 

 

# Load the data. 

x, y, kmasks, vocab = load_data(k=K, speakers=SPEAKERS, shuffle=SHUFFLE, 

                                use_delta_frames=USE_DELTA_FRAMES) 

accuracies = [] 

epochs = [] 

 

for fold in xrange(1,3): 

    print('Fold: ', fold) 

 

    # Split data based on current fold. 

    train, test = split_train_test(x, y, kmasks[fold]) 

    x_train, y_train = train 

    x_test, y_test = test 

 

    # Build the LSTM model. 

    model = Sequential() 

    model.add(LSTM(128, input_shape=x_train[0].shape, return_sequences=True)) 

    model.add(LSTM(128)) 

    model.add(Dense(len(vocab), activation=ACTIVATION)) 

    model.compile(loss=LOSS, optimizer=OPTIMIZER, metrics=['accuracy']) 

 

    # Train the model. 

    accs = [] 

    for _ in xrange(EPOCHS): 

        model.fit(x_train, y_train, batch_size=BATCH_SIZE, epochs=1, 

                  verbose=VERBOSE, validation_data=(x_test, y_test)) 

        _, acc = model.evaluate(x_test, y_test, batch_size=BATCH_SIZE, 

                                verbose=VERBOSE) 

        accs.append(acc) 

 

    # Find epoch with best accuracy. 

    best_acc = 0 

    best_epoch = 0 

    for epoch, acc in enumerate(accs): 

        if acc > best_acc: 

            best_acc = acc 

            best_epoch = epoch 

 

    print('Best accuracy: {} at epoch {}.'.format(best_acc, best_epoch)) 

    accuracies.append(best_acc) 

    epochs.append(best_epoch) 

 

 

                                                           
4 Complete source code is publicly available at https://github.com/adamheins/read-my-lips. 



The next code excerpt is part of the pre-processing pipeline to load and manipulate input data. 

def load_data(k=5, speakers=[], shuffle=False, use_delta_frames=True): 

    ''' Load facial feature data from disk. ''' 

 

    # Select data files to load. Loads data from speakers specified, or takes 

    # all data is no speakers are specified. 

    if len(speakers) == 0: 

        data_glob = os.path.join(FEATURE_DIRECTORY_PATH, '*', '*.npy') 

        data_files = glob.glob(data_glob) 

    else: 

        data_files = [] 

        for speaker in speakers: 

            speaker = 's' + str(speaker) 

            data_glob = os.path.join(FEATURE_DIRECTORY_PATH, speaker, '*.npy') 

            data_files.extend(glob.glob(data_glob)) 

 

    # Load the data. 

    x, y, empty_file_count = load_data_files(data_files, shuffle) 

    print('Skipped {} empty data files.'.format(empty_file_count)) 

 

    # Build mapping of vocabulary to integers, and remap output to it. 

    vocab, y = build_vocab(y) 

 

    # Calculate the maximum number of frames any word has. 

    word_max_frames = max_frames(x) 

 

    # If we're using delta frames, we need to keep an extra frame around to 

    # produce the delta. 

    if use_delta_frames: 

        effective_num_frames = NUM_FRAMES + 1 

    else: 

        effective_num_frames = NUM_FRAMES 

 

    for i, f in enumerate(x): 

        last = np.array(f[-1].reshape(1, NUM_FACIAL_FEATURES)) 

 

        # Add padding with duplicates of last frame. 

        for _ in xrange(f.shape[0], effective_num_frames): 

            x[i] = np.concatenate((x[i], last), axis=0) 

 

        x[i] = condense_frames(x[i], effective_num_frames) 

 

        if use_delta_frames: 

            # Take deltas. 

            for j in xrange(1, len(x[i])): 

                x[i][j-1,:] = x[i][j,:] - x[i][j-1,:] 

 

            # Remove extra frame from the end. 

            x[i] = x[i][:NUM_FRAMES, ...] 

 

        # Normalize the entire set of frames for this word. 

        x[i] = normalize_word_frame(x[i]) 

 

    # Convert to numpy arrays. 

    x = np.asarray(x) 

    y = np.asarray(y) 

 

    # Create masks for k test and training data sets. 

    kmasks = kfold(x, y, k) 

 

    return x, y, kmasks, vocab 

 

 


