
Automated Lip Reading using Delta Feature

Preprocessing and LSTMs

Andy Au, Adam Heins

Department of Mechanical and Mechatronics Engineering

University of Waterloo

Waterloo, Ontario, Canada

ch3au@uwaterloo.ca, awheins@uwaterloo.ca

Abstract—This paper describes a method for performing

automated lip reading. There are many existing solutions to

automated lip reading that involve deep learning approaches,

with the most recent being the LipNet project [1] by the

University of Oxford and Google DeepMind. LipNet is also the

most accurate (95.2%) work that uses the publicly available

GRID corpus dataset [2]. All of the existing solutions create their

input by extracting faces, or portions thereof, from the still

frames of videos of people speaking words. In this work, a

different feature extraction approach was used. Instead of

features from video frames themselves being used as input, the

difference (delta) between the features of neighboring frames was

used. Using the delta between features captures the movement

information of the speaker, which is directly related to the words

being spoken. Features were extracted from each video frame

using a pre-trained convolutional neural network model, VGG-

Face [3]. Neighboring features were then subtracted from each

other and normalized to generate delta features. The delta

features were used as input to an LSTM network, the output of

which was the predicted word embedding. The network was

evaluated on the GRID corpus dataset with an average accuracy

of 86.30% for speaker-dependent tests and 57.83% for speaker-

independent tests. The use of delta features improved both

accuracy and training time in both cases.

Keywords—lip reading; long short-term memory; convolutional

neural networks; delta features

I. INTRODUCTION

Lip reading refers to the task of determining the words

spoken by a person based only on visual input of the speaker’s

mouth with no accompanying audio data. Humans generally

display a poor ability to lip read, with correct identification of

compound words occurring only 21 ± 11% of the time [1].

Potential applications of automated lip reading include silent

dictation in public places, speech recognition in noisy

environments, and the captioning of silent films and videos

[1]. It would thus be beneficial to automate the task of lip

reading.

Automatic lip-reading generally consists of two stages,

feature extraction and classification. Feature extraction often

involves identifying and extracting the region around the

speaker’s mouth, as in [1] and [4]. In contrast, this work

describes a method in which features are extracted from the

entire face, rather than just the mouth region. This method

preserves visual cues that may be present in other facial

regions. Delta features are the differences between the features

of adjacent frames. Facial features that do not contribute

information to lip reading are automatically eliminated when

the input to the classifier consists of delta features, because the

delta of a feature that does not change is zero.

This work is focused on comparing the accuracy and

training speed of classification with and without delta features.

The model was evaluated in two ways. First, the model was

tested in a speaker-dependent manner, in which testing and

training was done on a single speaker at a time. Second, the

model was tested in a speaker-independent manner. It was

trained on a large set of speakers and tested using a

completely separate speaker that was held out from the

training set.

The paper is organized into the following sections. Section

II discusses background and related research on automated lip-

reading. Section III provides detail about the dataset used to

test and train the model. Section IV describes the experimental

methodology. Sections V and VI present the results of the

work and related discussion. Sections VII and VIII discuss

conclusions and future topics of research. Finally, a sample of

the source code used for this work is presented in Appendix A.

II. BACKGROUND REVIEW

Research on automated systems for reading lips has

received interest for many years, beginning with the PhD

thesis of B. Petajan [5]. Petajan’s work proposed using lip-

reading to augment existing audio recognition systems, but

more recent work has eliminated audio input entirely.

Common methods for automated lip-reading include Hidden

Markov Models (HMMs) and Support Vector Machines

(SVMs). One of the first visual-only lip reading systems was

done using HMMs using visemes and trisemes, but only on a

limited dataset [6]. Gergen et al. in [7] used a larger dataset

(GRID corpus) and developed a HMM/GMM system where

mouth regions of images are trained on an LDA-transformed

version of the Discrete Cosine Transform. This approach

resulted in accuracy of 86.4%. However, it was only trained at

the word-level, meaning only one word at a time was

analyzed. In [8], optical flow was used for feature extraction

which were then trained using SVM.

Recently, techniques have been developed using artificial

neural networks such as recurrent neural networks (RNNs)

and convolutional neural networks (CNNs). A recent

collaboration between University of Oxford and Google

DeepMind, known as LipNet, used a model that was trained at

the sentence-level rather than the word-level. On the GRID

corpus, LipNet achieved the highest state-of-the-art sentence-

level accuracy to date, 95.2% [1]. LipNet has three main

building blocks. First, spatiotemporal convolutional neural

networks (STCNNs) are used to process the mouth region of

video frames. The extracted feature data is then sent to Gated

Recurrent Units (GRUs), which are a type of RNN with

similarities to Long-Short Term Memory (LSTM) networks.

The output from the GRUs is processed by a linear

transformation and a softmax function. As with many LSTM

models, this model was also trained with Connectionist

Temporal Classification (CTC) [1].

III. THE GRID DATA CORPUS

The GRID Corpus1 dataset was used because it contains

videos of full sentences being spoken, allowing for the

possibility of sentence-level classifications in future work. The

dataset is publicly available and contains video recordings of

1000 sentences spoken by 34 speakers. Each sentence consists

of exactly six words, resulting in a sample size of 60,000

words per speaker. Leaving out Speaker 21, the videos of

whom are missing, the dataset contains a total of 1,980,000

spoken words [2]. Each sentence follows the consistent

structure of:

command → color → preposition → letter → digit → adverb

The vocabulary consists of a total of 51 words [2], which

are identified in Table I. The letter W was excluded due to the

fact that it takes much longer to say than all other letters [2].

The number of occurrences of each word in a speaker’s

dataset is not equal due to the fixed sentence format. Letters

appear the least frequently, followed by numbers, and finally

all other words.

1 Publicly available at http://spandh.dcs.shef.ac.uk/gridcorpus/.

TABLE I.
DESCRIPTION OF VOCABULARY USED BY THE SPEAKERS IN THE GRID CORPUS.

THE NUMBER OF OCCURRENCES FOR EACH WORD OF A GIVEN TYPE, PER

SPEAKER, IS ALSO SHOWN.

Word Type Words
Number of
Occurrences per
Word

Command bin, lay, place, set 248 - 256

Colour blue, green, red, white 248 – 256

Preposition at, by, in, with 248 – 256

Letter A-Z, excluding W 40

Digit 0-9 100

Adverb again, now, please, soon 248 - 256

It should be noted that the sentences do not follow English

language grammar. An example sentence is “Lay blue at A

seven please”. Each video has a fixed length of 3 seconds and

frame rate of 25 frames per second, giving a fixed length of 75

frames. Each video also comes with an “alignment” file that

records the interval of frames over which each word is spoken

[2].

IV. EXPERIMENTAL METHODOLOGY

A. Feature Extraction and Pre-processing

Facial features were extracted from the raw video frames

using a convolutional neural network (CNN). Due to the fact

that it is impractical to train a CNN from scratch due to time

and data limitations, the pre-trained “VGG-Face”2 CNN by

the Visual Geometry Group from University of Oxford was

used instead. VGG-Face was based on the University of

Oxford’s VGG-16 architecture, which contains a sequence of

convolution, pooling and fully connected layers. VGG-Face

was trained with 2,622 identities for a total of 2.5 million face

images [3]. Figure 1 shows the architecture of VGG-Face.

Using a pre-trained model with a large dataset like that of

VGG-Face provided high quality features for transfer learning.

The VGG-Face model takes in individual images as input and

outputs a flattened feature vector of length 512. Feature

vectors were extracted by taking the output of the model

(without the fully connected layers). The feature vectors of

each video were then grouped per word and saved to an output

binary file which could be loaded for training at any time. The

feature extraction process was done separately from the

training of the model due to the fact that feature extraction

was the step that took the largest amount of time.

2 Source code available at https://github.com/rcmalli/keras-vggface. Based on

http://www.robots.ox.ac.uk/~vgg/software/vgg_face/.

Fig. 1. Architecture of the VGG-Face CNN used for facial feature identification in each video frame.

Prior to training, the feature vectors were loaded from the

binary files and preprocessed. First, the number of feature

vectors for each word were truncated or extended so that each

word had the same number of frames. It was decided that six

frames should be used because, on average, six frames was

enough to cover many of the shortest words in the dataset

(such as the letters), and increasing the number did not show

any increase in accuracy [4]. Words that had too few frames

were padded with repetitions of the features of the last frame.

Words with more than six frames were condensed by

averaging the features of neighboring frames. Next, deltas of

the feature vectors for each word were generated by

subtracting neighboring feature vectors. Finally, the feature

deltas were normalized and split into separate training and

testing datasets for cross validation.

For output, each word is converted into a numerical vector

using one-hot encoding where the length of the vector is equal

to the size of the vocabulary. Word embedding techniques

such as Word2vec were considered [9], but because the

vocabulary size of GRID corpus is only 51 words, one-hot

encoding is more efficient. Word2vec would be more efficient

if the vocabulary size was a lot larger (i.e. greater than 200

words).

B. Classification

Classification was done using a similar architecture to [4],

constructed with the Keras 3 framework. The model was a

RNN. The first two layers were LSTMs with a size of 128

nodes each. LSTMs address the issue of vanishing and

exploding gradients in traditional RNNs, as LSTM blocks are

able to store representations of inputs for much larger time

steps [10]. The final layer was a fully connected layer using

tanh as the activation function. The network used mean

squared error (MSE) as the loss function and Adam [11] as the

optimizer.

The output of the network was a vector of length 51,

representing the probability that the input matched each of the

51 possible words in the vocabulary. Figure 2 illustrates the

prediction process for one word.

3 Documentation can be found at https://keras.io.

C. Validation

The model was tested in two ways. The first way was to

train and test on only a single speaker’s dataset at once,

referred to as speaker-dependent testing. The model was tested

using k-fold cross-validation with k=5. The results for each

speaker used were then averaged to calculate the final

accuracy of the model.

The second way in which the model was tested was to

train on multiple speakers and then test on a completely

different speaker that was not part of the training set, referred

to as speaker-independent testing. Twenty-five speakers from

the data set were used for this task, for a total of 150,000

spoken words. During each test, 24 speakers were used for

training, and the remaining speaker was used for testing.

In both scenarios, the model was trained and tested

separately with normal features and delta features, so that the

impact of using delta features could be examined.

V. RESULTS

The first set of tests evaluated the performance of the

model when trained and tested speaker-dependently. Speakers

1-5 from the dataset were used. The accuracies for each

speaker were averaged to arrive at a final overall accuracy.

The optimal number of training epochs was also recorded. The

results are summarized in Table II.

TABLE II.
RESULTS FOR SPEAKER-DEPENDENT MODEL WITH AND WITHOUT DELTA

FEATURES. RESULTS WERE AVERAGED OVER SPEAKERS 1 - 5.

 With Delta Features
Without Delta

Features

Mean Accuracy 86.30% 84.66%

Accuracy Std.
Dev.

3.02% 2.06%

Optimal Training
Epochs

29 74

Fig. 2. End-to-end architecture used to classify a set of video frames as a spoken word, with example output.

Speaker-independent tests were also performed, in which

the model was trained on all speakers except one, whose data

was used for the test set. Twenty-five speakers (Speakers 1 -

15, 17, 18, 27 - 34) were used for this task. Three tests were

done, in which Speaker 1, 2, and 3 were held out for testing,

respectively. Testing was done both with and without delta

features. The results for each test were averaged and are

summarized in Table III.

TABLE III.
RESULTS FOR SPEAKER-INDEPENDENT TESTS IN WHICH A DATA SET OF 25

SPEAKERS WAS USED, AND A SINGLE SPEAKER WAS HELD OUT FOR TESTING AT

A TIME. THIS WAS REPEATED FOR SPEAKER 1, 2, AND 3 BOTH WITH AND

WITHOUT DELTA FEATURES.

 With Delta Features
Without Delta

Features

Mean Accuracy 57.83% 40.05%

Accuracy Std.
Dev.

5.01% 5.37%

Optimal Training
Epochs

6 11

VI. DISCUSSION

In the speaker-dependent tests, the usage of delta features

provided a slight accuracy increase of 1.63%. Notably,

training to this level of accuracy without delta features

required over 2.5 times more training epochs, considerably

increased the training time required. One of the possible

reasons for this result is that the speaker’s facial movement is

the most relevant data for predicting the words spoken. Delta

features already emphasize movement, since they are the

difference between the features of neighboring video frames.

This provides a “shortcut” for the network, such that the

model doesn’t have to learn to isolate the movement itself and

thus training time is reduced considerably.

The accuracy of 86.30% achieved using delta features is

comparable to the best accuracy achieved by word-level

classification, 86.4% [7]. However, it falls short of the state-

of-the-art sentence-level classification performed by [1],

which achieved an accuracy of 95.2%.

The speaker-independent tests resulted in a considerable

difference in accuracy when delta features were used. The

usage of delta features improved accuracy by 17.78%. Like

the speaker-dependent tests, more epochs were required to

train without delta features. In this case, training without delta

features required 1.8 times as many training epochs.

The large increase in accuracy when delta features were

used suggests that the movement a person makes when saying

a word, captured by delta features, is more generalizable than

the actual sequence of facial features. In other words, the

movements people make when saying a given word are more

generalizable than the overall appearance of people when

saying the word. Thus, a model trained with delta features was

more accurate when applied to as-yet-unseen speakers for

testing.

The architecture used in this model is not competitive with

the current state-of-the-art sentence-level classifier [1], which

achieves an accuracy of 88.6% when used for a speaker-

independent test. However, it is considered likely that

including the remaining speakers in the GRID dataset would

improve accuracy further.

VII. CONCLUSION

The use of delta features in preprocessing shows benefits

in both accuracy and training time for both speaker-dependent

and speaker-independent tests. In speaker-dependent tests, the

use of delta features increased the accuracy of the model by

1.63% and reduced training time by a factor of 2.5. Further, in

speaker-independent tests, the use of delta features increased

accuracy by 17.78% and reduced training time by a factor of

1.8.

The accuracy of the model was below the state-of-the-art

for both the speaker-dependent and speaker-independent tests;

however, the concept of delta features is independent of the

model and could be used as a preprocessing step in other work

to improve results. The concept of delta features can be

extended to the delta between raw image inputs, as well as

other input types. It is recommended that the use of delta

features be investigated in any work where change in features,

or movement, is considered to be important for classification.

VIII. FUTURE WORK

The VGG-Face model was trained for faces and not just

the mouth region [3]. As such, some of the features of the face

might not have provided useful context for the LSTM network

and could have reduced the accuracy of the model. The VGG-

Face model could potentially be more effective if output from

a different layer, that had a higher emphasis on the mouth

region, were used instead.

In order to determine which layer would be best for lip

recognition, one could prepare two sets of the same input face

images, but one set has the mouth removed (setting the value

of the mouth region pixels to zero). The two inputs could then

be passed through the VGG-Face network, generating two sets

of feature vectors for each layer (with and without the mouth).

For each layer, a distance metric could be used to evaluate the

features with the mouth against the features without the

mouth. The layer that recognizes the mouth most effectively

would be the layer that yields the highest distance metric

between its two sets of feature vectors. Some possible distance

metrics include the average Euclidean distance between each

set of corresponding feature vectors or the variance of the

feature vectors for each layer. One could also visualize the

difference between the sets of feature vectors by creating a t-

SNE visualization, such that the distance could be visualized

on a two-dimensional plane [12].

Aside from determining the best layer of the VGG-Face

model to use, a CNN trained just to classify the mouth region

could provide improvements. Such a model would provide

feature data on the part of the face that offers the most context

for lip reading. However, similar to the VGG-Face project, a

very large dataset and considerable computational resources

would be required to train such a model [3].

A further improvement to the work would be to

incorporate sentence-level classification, as in [1]. This would

allow the model to learn about the speakers’ transitions

between words, in addition to each word individually. The

additional context of sentence-level classification would

provide robustness against differences between the accents of

speakers that may slur words together in different ways.

Sentence-level classification can be done with temporal

classifiers, such as the CTC used in [1], which represents the

outputs as a probability distribution over all of the possible

labeled sentences. CTC also eliminates both the need to pre-

segment video frames into sets representing individual words,

and the need to post-process network outputs (words) into

labeled sentences [13]. Using CTC would greatly decrease the

complexity of pre-processing in this work.

REFERENCES

[1] Y. M. Assael, B. Shillingford, S. Whiteson, and N. de Freitas. “Lipnet:
End-To-End Sentence-Level Lipreading”, arXiv preprint
arXiv:1611.01599, 2016.

[2] M. Cooke, J. Barker, S. Cunningham, and X. Shao. “An audio-visual
corpus for speech perception and automatic speech recognition,” The
Journal of the Acoustical Society of America 120(5):2421–2424, 2006.

[3] O. M. Parkhi et al. “Deep face recognition,” Proceedings of the British
Machine Vision, 2015.

[4] M. Wand, J. Koutnik, and J. Schmidhuber. “Lipreading With Long
Short-Term Memory,” IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 6115–6119, 2016.

[5] E. D. Petajan. “Automatic Lipreading to Enhance Speech Recognition
(Speech Reading),” Ph.D. dissertation, University of Illinois at Urbana-
Champaign, 1984.

[6] J. Goldschen, O. N. Garcia, and E. D. Petajan. “Continuous automatic
speech recognition by lipreading,” Motion-Based recognition, pp. 321–
343. Springer, 1997.

[7] S. Gergen et al. “Dynamic Stream Weighting for Turbo-Decoding-
Based Audiovisual ASR,” Interspeech, pp. 2135–2139, 2016.

[8] A. Shaikh, D. Kumar, and W. Yau. “Lip Reading using Optical Flow
and Support Vector Machines,” IEEE International Congress on Image
and Signal Processing, 1:327–330, 2010.

[9] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean.
“Distributed Representations of Words and Phrases and their
Compositionality,” Advances in Neural Information Processing Systems
26, pages 3111–3119, 2013.

[10] S. Hochreiter and J. Schmidhuber. “Long short-term memory,” Neural
computation, 9(8):1735–1780, 1997.

[11] D. Kingma and J. Ba. “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[12] L. van der Maaten and G. E. Hinton. “Visualizing Data using t-SNE,”
Journal of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.

[13] A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber. “Connectionist
Temporal Classification: Labelling Unsegmented Sequence Data with
Recurrent Neural Networks,” ICML, 2006.

APPENDIX A: SAMPLE SOURCE CODE

All source code4 was written in Python. The following code is an excerpt from the script used to load and preprocess data.

Data parameters.

K = 5

SPEAKERS = [1]

SHUFFLE = True

USE_DELTA_FRAMES = True

Model parameters.

EPOCHS = 50

BATCH_SIZE = 32

ACTIVATION = 'tanh'

LOSS = 'mean_squared_error'

OPTIMIZER = 'adam'

VERBOSE = True

Load the data.

x, y, kmasks, vocab = load_data(k=K, speakers=SPEAKERS, shuffle=SHUFFLE,

 use_delta_frames=USE_DELTA_FRAMES)

accuracies = []

epochs = []

for fold in xrange(1,3):

 print('Fold: ', fold)

 # Split data based on current fold.

 train, test = split_train_test(x, y, kmasks[fold])

 x_train, y_train = train

 x_test, y_test = test

 # Build the LSTM model.

 model = Sequential()

 model.add(LSTM(128, input_shape=x_train[0].shape, return_sequences=True))

 model.add(LSTM(128))

 model.add(Dense(len(vocab), activation=ACTIVATION))

 model.compile(loss=LOSS, optimizer=OPTIMIZER, metrics=['accuracy'])

 # Train the model.

 accs = []

 for _ in xrange(EPOCHS):

 model.fit(x_train, y_train, batch_size=BATCH_SIZE, epochs=1,

 verbose=VERBOSE, validation_data=(x_test, y_test))

 _, acc = model.evaluate(x_test, y_test, batch_size=BATCH_SIZE,

 verbose=VERBOSE)

 accs.append(acc)

 # Find epoch with best accuracy.

 best_acc = 0

 best_epoch = 0

 for epoch, acc in enumerate(accs):

 if acc > best_acc:

 best_acc = acc

 best_epoch = epoch

 print('Best accuracy: {} at epoch {}.'.format(best_acc, best_epoch))

 accuracies.append(best_acc)

 epochs.append(best_epoch)

4 Complete source code is publicly available at https://github.com/adamheins/read-my-lips.

The next code excerpt is part of the pre-processing pipeline to load and manipulate input data.

def load_data(k=5, speakers=[], shuffle=False, use_delta_frames=True):

 ''' Load facial feature data from disk. '''

 # Select data files to load. Loads data from speakers specified, or takes

 # all data is no speakers are specified.

 if len(speakers) == 0:

 data_glob = os.path.join(FEATURE_DIRECTORY_PATH, '*', '*.npy')

 data_files = glob.glob(data_glob)

 else:

 data_files = []

 for speaker in speakers:

 speaker = 's' + str(speaker)

 data_glob = os.path.join(FEATURE_DIRECTORY_PATH, speaker, '*.npy')

 data_files.extend(glob.glob(data_glob))

 # Load the data.

 x, y, empty_file_count = load_data_files(data_files, shuffle)

 print('Skipped {} empty data files.'.format(empty_file_count))

 # Build mapping of vocabulary to integers, and remap output to it.

 vocab, y = build_vocab(y)

 # Calculate the maximum number of frames any word has.

 word_max_frames = max_frames(x)

 # If we're using delta frames, we need to keep an extra frame around to

 # produce the delta.

 if use_delta_frames:

 effective_num_frames = NUM_FRAMES + 1

 else:

 effective_num_frames = NUM_FRAMES

 for i, f in enumerate(x):

 last = np.array(f[-1].reshape(1, NUM_FACIAL_FEATURES))

 # Add padding with duplicates of last frame.

 for _ in xrange(f.shape[0], effective_num_frames):

 x[i] = np.concatenate((x[i], last), axis=0)

 x[i] = condense_frames(x[i], effective_num_frames)

 if use_delta_frames:

 # Take deltas.

 for j in xrange(1, len(x[i])):

 x[i][j-1,:] = x[i][j,:] - x[i][j-1,:]

 # Remove extra frame from the end.

 x[i] = x[i][:NUM_FRAMES, ...]

 # Normalize the entire set of frames for this word.

 x[i] = normalize_word_frame(x[i])

 # Convert to numpy arrays.

 x = np.asarray(x)

 y = np.asarray(y)

 # Create masks for k test and training data sets.

 kmasks = kfold(x, y, k)

 return x, y, kmasks, vocab

